MİKRODALGA TÜMÖR ABLASYONU İÇİN HÜZME YÖNLÜLÜĞÜ YÜKSEK KOMPAKT ANTEN VE KOMPAKT ÇOK BANDLI DÜZLEMSEL ANTEN TASARIMI VE ANALİZİ

Mikrodalga ablasyonu (MDA) kanserli dokuları mikrodalga enerjisini kullanarak yok etme tekniği olarak bilinmektedir. İmplant antenler mikrodalga ablasyonu (MDA) için uygun antenler olup, küçük yapıları ve düşük maliyetleri ile tercih edilmektedir. Kanserli dokunun gelişimini etkin bir şekilde baskılayabilmek için, özgül soğrulma oranı (ÖSO) ve sıcaklık dağılımı kontrol edilebilen bu tip antenler değişik frekans ve güçlerde kullanılmaktadır. Bu çalışmada mikrodalga tümör ablasyonu için CST Studio ile tasarlanan ve 2.41 GHz de rezonans durumunda olan hüzme yönlülüğü yüksek kompakt anten ve 2.46 GHz’ de rezonans durumunda olan kompakt çok bandlı düzlemsel anten kullanıldı. Bu radyatör tip antenler 2.45 GHz’ de tümörlü doku karşısına yerleştirilerek simule edildi. Hüzme yönlülüğü yüksek kompak anten için 2.41 GHz de yaptığı ışıma sonucunda maksimum SAR değeri 8.53 W/kg  SAR/10g olarak elde edildi ve ısı akışı 1 W için sıcaklık aralığı 37 –48℃  olarak elde edildi. Kompakt çok bandlı düzlemsel anten için 2.45 GHz de yaptığı ışıma sonucunda maksimum SAR değeri 22.5 W/kg  SAR/10g olarak elde edildi ve ısı akışı 1 W için sıcaklık aralığı 36 –41℃ olarak elde edildi. Antenlerin analizi ile ilgili olarak Geri dönüş kaybı (S11), elektrik alan, yönlendiricilik ve SAR değerleri ile simulasyonda mikrodalga gücünün uygulanmasıyla bir eğri buyunca elde edilen sıcaklık – uzaklık grafikleri simulasyon sonucu olarak rapor edilmiş ve sonuçlar yorumlanmıştır. Elde edilen simulasyon sonuçlarına göre her iki anteninde mikrodalga ablasyonunda kullanılabileceğine dair sonuçlar elde edilmiştir.

BEAM DIRECTION HIGH COMPACT ANTENNA AND COMPACT MULTIBAND PLANAR ANTENNA DESIGN AND ANALYSIS FOR MICROWAVE TUMOR ABLATION

Microwave ablation (MWA) is known as the technique of destroying cancerous tissues using microwave energy. Implant antennas are suitable antennas for microwave ablation (MWA) and are preferred for small structures and low costs. In order to effectively suppress the development of cancerous tissue, this type of antenna can be controlled with specific absorption rate (SAR) and temperature distribution. In this study beam direction high compact antenna resonance at 2.41 GHz and compact multiband planar antenna resonance at 2.46 GHz were designed with CST Studio for microwave tumor ablation. These radiator type antennas were simulated by placing them on a tumor tissue at 2.45 GHz. As a result of the radiation at 2.41 GHz for the beam directional high compact antenna, the maximum SAR value was obtained as  8.53 W/kg  SAR/10g and the temperature range for heat flow 1 W was obtained as 37 –48℃   For a compact multi-band planar antenna at 2.45 GHz, the maximum SAR value was obtained as 22.5 W / kg SAR / 10 g and the temperature range for heat flow 1 W was obtained as 37 –48℃. With respect to the analysis of antennas, return loss (S11), electric field, directivity and SAR values and temperature - distance graph obtained as a result of the application of microwave power in simulation, were reported as a result of simulation and the results were interpreted.

___

  • Chen, Z. N., Liu, G. C. and See, T. S. P. (2009). Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans. Antennas Propag., vol. 57, pp. 1850–1853.
  • Carrafiello, G., Lagana, D., Mangini, M., Fontana, F., Dionigi, G., Boni, L., Rovera, F., Cuffari, S., Fugazzola, C. (2008). Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. International Journal of Surgery 6, S65–S69.
  • Doddipalli, S., Kothari, A. And Peshwe, P. (2017). A Low Profile Ultrawide Band Monopole Antenna for Wearable Applications. Hindawi, International Journal of Antennas and Propagation, Research Article.
  • De Santis, V., Feliziani, M., Maradei, F. (2011). Numerical Simulation of Blood Vascularization Influence in Microwave Ablation. 2011 IEEE, 357-360.
  • Gas, P. And Szymanik, B. (2018). Shape optimization of the multi-slot coaxial antenna for local hepatic heating during microwave ablation. 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, pp. 319-322.
  • Gabriel, C. (1996). It is Foundation. https://itis.swiss/virtual-population/tissue properties/database/dielectric-properties/
  • Huang vd. (2013). Design Techniques for Antenna Needles Used in Microwave Hyperthermia Therapy for Tumor Treatment. IEEE, 37 -39.
  • Ibitoye, A.Z., Orotoye, T., Nwoye, E.O., Aweda, M.A. (2018). Analysis of efficiency of different antennas for microwave ablation using simulation and experimental methods. Egyptian Journal of Basic and Applied Sciences, Volume 5, Issue 1, Pages 24-30.
  • Jesus M. ,Rubio C. (2011). Coaxial Slot Antenna Design for Microwave Hyperthermia using Finite-Difference Time-Domain and Finite Element Method. The Open Nanomedicine Journal, 3, 2-9.
  • Jusoh, M., Jamlos, M.H., Kamarudin, M.R., Sabapathy, T. And Jais, M.I. (2012). A Compact hıgh dırectional beam antenna for wimax and wifi application. Microwave and Optical Technology Letters, Vol. 55, No. 7, 1686 -1692.
  • Kim, J. and Rahmat-Samii, Y. (2005). Implanted antennas inside a human body: Simulations, designs and characterizations. IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1934–1943.
  • Luyen, H., Gao, F., Hagness, S.C. and Behdad, N. (2004). Microwave Ablation at 10.0 GHz Achieves Comparable Ablation Zones to 1.9 GHz in Ex Vivo Bovine Liver. IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1702-1710.
  • Malhotra vd. (2014). Accurate Investigation of Coaxial-Slot Antenna for Invasive Microwave Hyperthermia Therapy. International Journal of Sciences: Basic and Applied Research, IJSBAR, ISSN 2307-4531.
  • Mehdipour, A., Sebak, A.R., Trueman, C.W. and Denidni, T.A. (2012). Compact Multiband Planar Antenna for 2.4/3.5/5.2/5.8-GHz Wireless Applications. IEEE Antennas and Wireless Propag. Letters, Vol. 11, 144 -147.
  • Mohtashami, Y., Luyen, H., Sawicki, J. F., J. D., Shea, J. D., Behdad, N. and x Hagness, S.C. (2018). Tools for Attacking Tumors: Performance Comparison of Triaxial, Choke Dipole, and Balun-Free Base-Fed Monopole Antennas for Microwave Ablation. In IEEE Antennas and Propagation Magazine, vol. 60, no. 6, pp. 52-57.
  • Murat, C., Kaya, A., Kaya, I., Kaya, E. and Palandöken, M. (2018). Microwave Probe Design for ISM Band Microwave Ablation Systems. 2018 Medical Technologies National Congress (TIPTEKNO), Magusa, pp. 1-4.doi: 10.1109/TIPTEKNO.2018.8596904
  • Pennes, H. (1949). Temperature of skeletal muscle in cerebral hemiplegia and paralysis agitans. Archives of Neurology & Psychiatry, vol. 72, no. 3, pp. 269-279.
  • Tal, N. and Leviatan, Y. "A minimally invasive microwave ablation antenna (2017). 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv,pp. 1-3.doi: 10.1109/COMCAS.2017.8244738
  • Vojackova, L. (2013). Matrix of interstitial applicators for microwave thermoablation. Master thesis, Facluty od Electrical Engineering CTU in Prague, Czech Republic.
  • Vojackova, L., Merunka, I., Fiser, O. and Vrba, J. (2014). Interstitial applicators for breast cancer treatment by microwave thermoablation. In Radioelektronika (RADIOELEKTRONIKA), 2014 24th International Conference, Bratislava.
  • Xia, W., Saito, K., Takahashi , M., and Ito, K. (2009). Performances of an implanted cavity slot antenna embedded in the human arm. Antennas Propag., vol. 57, no. 4, pp. 894–899.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi