ENDÜSTRİYEL MİKRODALGA KAYNAKLARA MARUZ KALAN ÇALIŞANLAR İÇİN ELEKTROMANYETİK RİSK ANALİZİ

Son yıllarda uydu yayın sistemleri, mikrodalga fırınlar, indüksiyon fırınları, polis ve ordu radar sistemleri, tıbbi görüntüleme gibi elektromanyetik cihazların kullanımının hızlı bir şekilde artmasıyla insanlar sürekli elektromanyetik dalgalara maruz kalmaktadır. Özellikle endüstride kullanılan yüksek güçlü mikrodalga kaynakları çalışan sağlığı üzerinde ciddi riskler oluşturmaktadır. İndüksiyon fırını ve buna benzer cihazların gerek hatalı kullanımı gerekse cihazlarda meydana gelen kaçaklar nedeniyle cihazı kullanan operatörlerin beyin, göz ve deri dokusunda ciddi hasarlar meydana gelebilmektedir. Bu çalışmada, endüstriyel mikrodalga kaynaklarının çalışma frekansları olan 915 ve 2450 MHz frekanslarında dokularda oluşan SAR değerleri ve sıcaklık artışı, çok katmanlı doku modeli kullanılarak hesaplanmıştır. Analitik analizler MATLAB programı yardımıyla ayrı ayrı yapılmıştır. Elde edilen sonuçlar, tıbbi güvenlik limit değerleriyle karşılaştırılmış ve limit değerlerin altında olduğu tespit edilmiştir.

ELECTROMAGNETIC RISK ANALYSIS FOR EMPLOYEES EXPOSED TO INDUSTRIAL MICROWAVE SOURCES

In recent years, people are often exposed to electromagnetic waves due to the increase of electromagnetic devices such as satellite broadcasting systems, microwave ovens, induction ovens, police and army radar systems and medical imaging modalities. Particularly, the microwave sources used in industry have extreme effects on the employee health. Because of inaccurate using of devices such as induction ovens etc. or leakage from from devices, serious damages mayoccur in the brain, eye and skin tissue of the person using the device. In this study, the SAR value and temperature increase of tissues were computed by using multi layered tissue model at the frequency ranges of 915, 2450 MHz which are operating frequencies of industrial microwave sources. Analytical analysis were implemented using MATLAB Software tool. The results were compared with medical safety limitsand observed that they are under the limits.

___

  • Banik S., Bandyopadhyay S., and Ganguly S., 2003. Bioeffects of microwave-a brief review. Bioresource Technol, 87, 155-159.
  • Kahriman M. et al., 2016. "Low Cost System Design to Measure and Analyze of Temperature Rise Caused by 2450 MHz RF Energy in Human Phantom Model", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 27, pp. 92-102.
  • Kahriman M. Çerezci O., Demir Z., 2001. Cep Telefonlarının Oluşturduğu Elektromagnetik Alanların (EMA) Ölçülmesi ve Sonuçlarının Karşılaştırılması, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt: 5 Sayı:1 ISSN: 1301-4048.
  • Kathy L. Ryan, J. A.D’Andrea, J.R. Jauchem, and P.A. Mason,2000.Radio Frequency Radiation of Millimeter Wave Lenght: Potential Occupational Safety Issues Relating to Surface Heating. Helath Physics,Vol.78, no.2. K. Shiba, N. Higaki, Analysis of SAR and current density in human tissue surrounding an energy transmitting coil for a wireless capsule endoscope, Proceedings of the 20th International Zurich Symposium on Electromagnetic Compatibility 1 (2009) 321–3248 Zurich.
  • Lambert, J.P.,1980. Biological Hazards of Microwave Radiation. J FoodProtect, 43 (8), 625-628. Liu, J., Chen, X. and Xu, L.X., 1999. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Transactions on Biomedical Engineering, 46(4), 420-428.
  • Nageswari, K.S. and Sector, B., 2003. Biological effects of microwaves and mobile telephony. In Proceeding of the international conference on Non-Ionizing radiation (ICNIR 2003) pp. 20-22.
  • N. Suwannapum, P. Rattanadecho, 2011. Analysis of heat-mass transport and pressure buildup induced inside unsaturated porous media subjected to microwave energy using a single (TE10) mode cavity, Drying Technol. Int. J. 29(09) 1010–1024.
  • P. Rattanadecho, N. Suwannapum, W. Cha-um, 2009. Interactions between electromagnetic and thermal fields in microwave heating of hardened Type I-cement paste using a rectangular waveguide (influence of frequency and sample size), ASME J. Heat Transfer, 131, 082101.
  • T. Wessapan, S. Srisawatdhisukul, P. Rattanadecho, 2011. The effects of dielectric Shield on specific absorption rate and heat transfer in the human body exposed to leakage microwave energy, Int. Commun. Heat Mass Transfer 38 255–262.
  • Carlak HF, Gencer NG, Beşikci C., 2016.Theoretical assessment of electro-thermal imaging: A new technique for medical diagnosis, Infrared Physics & Technology, vol.76, pp. 227-234.
  • Özen Ş., Helhel S., Bilgin S., 2011. Temperature And Burn Injury Prediction Of Human Skin Exposed To Microwaves: A Model Analysis", Radiation and Environmental Biophysics, vol.50, pp.483-489.
  • Özen Ş., Helhel S., Çerezci O., 2008. Heat Analysis Of Biological Tissue Exposed To Microwave By Using Thermal Wave Model Of Bio-Heat Transfer (Twmbt), BURNS, vol.34, pp.45-49.
  • Özen Ş., Helhel S., Çolak Ö.H., 2007. Electromagnetic Field Measurements Of Radio Transmitters In Urban Area And Exposure Analysis, Microwave and Optical Technology Letters, vol.49, pp.1572-1578.
  • Özen Ş., Onural A.Ş., Selçuk Ç., 2004. Experimental Determination of Heat Rise and SAR Occurred by 900 MHz EM Radiation on Human Brain by Using Brain Phantom Model, GU Journal of Science, cilt.17, ss.127-132.
  • World Health Organization (WHO), 1993. Environmental Health Criteria 137: Electromagnetic Fields (300Hz-300GHz). 53, Genowa.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi