İŞ YÜKÜ MİNİMİZASYONUNU HEDEFLEYEN ERGONOMİK BİR İŞÇİ ATAMA MODELİ ÖNERİSİ
Çalışanların fiziksel ve zihinsel kapasiteleri üretim verimliliğini etkileyen enönemli faktörler arasındadır. Fiziksel ve zihinsel kapasitenin sınırları insan olarakyapısal özelliklerin yanı sıra iş ortamının koşullarından da etkilenmektedir. Bukoşullar, aydınlatma, gürültü, havalandırma, titreşim gibi iş ortamının fizikselözellikleridir. Söz konusu özellikler, çalışanın performansını ve üstesindengelebileceği iş yükü seviyesini olumlu ya da olumsuz yönde etkilemektedir.Üretimde verimliliğin sağlanabilmesi için çalışanların kapasitelerine uygun iş yüküseviyelerine sahip olan işlere atanmaları gerekmektedir. İş yükü seviyesi fazlaolduğu zaman çalışan, erken dönemde yorulmaktadır. Yorgunluk, solunum,dolaşım, kas-iskelet sistemi, merkezi sinir sistemi gibi vücudun temelfonksiyonlarını yürüten sistemlerde zorlanmaya sebep olmaktadır. Yorgunlukuzun süre devam ettiğinde ise işe devamsızlıklar, kalite düzeyinde düşüşler, işkazaları gibi olumsuz sonuçlar ortaya çıkabilmektedir. Yorgunluk aynı zamandaçalışanın motivasyonunu da düşürmektedir. Bu kapsamda çalışmada, üretimmiktarı, birlikte çalışılan yükün ağırlığı, iş ortamındaki sıcaklık, aydınlatma,gürültü ve çalışma duruşu faktörlerini dikkate alan ve iş yükü en küçüklemesinihedefleyen bir işçi atama modeli önerilmiştir. Önerilen model, bir reklamfirmasının kutu harf üretim alanında gerçekleştirilen işlere çalışanların atanmasıamacıyla kullanılmış ve böylece zorlanma düzeyini en küçükleyen bir atamanınyapılması sağlanmıştır.
AN ERGONOMIC WORKER ASSIGNMENT MODEL THAT AIMS TO MINIMIZE THE WORKLOAD
The physical and mental capacities of employees are one of the most important factors affecting production efficiency. The boundaries of the physical and mental capacities are influenced by the conditions of the working environment as well as the structural characteristics of the human being. These are the physical characteristics of the work environment, such as lighting, noise, ventilation, vibration. These characteristics affect the performance of the employee and the level of workload that he or she can overcome, either positively or negatively. In order to achieve productivity in production, employees need to be assigned to jobs having appropriate workload levels for their capacities When the workload level is high, worker fatigue occurs at the early stage of the work. Fatigue causes strain in respiration system, circulation system, musculoskeletal system, central nervous system carrying out the basic functions of the body, as the body's basic functions. When fatigue continues for a long time, negative results such as absenteeism, decline in quality level and work accidents can occur. Fatigue also reduces employee motivation. In this context, a worker assignment model aiming workload minimization has been proposed that takes into consideration the factors such as the amount of production, the weight of the workload to be worked together, the temperature, lighting, noise level of working area and working posture. The proposed model was used to assign employees to jobs performed in the field of box letter manufacturing of an advertising firm to make possible to utilize an assignment that minimizes the level of strain.
___
- Akkale E.C 2014. Elle Taşıma İşlerinde İş Sağlığı Ve
Güvenliğinin NIOSH Kaldırma Denklemi İle
İncelenmesi, Çalışma Ve Sosyal Güvenlik
Bakanlığı.
- Akyol, S. D., & Baykasoğlu, A. (2016). ErgoALWABP: a
multiple-rule based constructive randomized
search algorithm for solving assembly line worker
assignment and balancing problem under
ergonomic risk factors. Journal of Intelligent
Manufacturing, 1-12.
- Ansari, N. A., Shende, P. N., Sheikh, M. J., Vaidya, R. D.,
2013. Study and Justification of Body Postures of
Workers Working In SSI by Using Reba.
International Journal of Engineering and
Advanced Technology (IJEAT), 2(3), 505-509.
- Aryanezhad, M. B., Kheirkhah, A. S., Deljoo, V. and
Mirzapour Al-e-hashem, S. M. J. 2009. Designing
safe job rotation schedules based upon workers’
skills. The International Journal of Advanced
Manufacturing Technology, 41(1-2), 193-199.
- Babalık, F. C. 2011. Mühendisler için ergonomi:
İşbilim. 3. Baskı, Dora Yayınları, Bursa.
- Baykasoglu, A., & Akyol, Ş. D. (2014). Ergonomik
Montaj Hattı Dengeleme. Gazi Üniversitesi
Mühendislik-Mimarlık Fakültesi Dergisi, 29(4).
- Baykasoglu, A., Tasan, S. O., Tasan, A. S., & Akyol, S. D.
2017. Modeling and solving assembly line design
problems by considering human factors with a
real-life application. Human Factors and
Ergonomics in Manufacturing & Service
Industries.
- Boenzi F., Digiesi S. , Facchini F. and Mummolo G.,
2017. Ergonomic improvement through job
rotations in repetitive manual tasks in case of
limited specialization and differentiated
ergonomic requirements. IFAC-PapersOnLine 49-
12 (2016) 1667–1672.
- Chaudhary, R., Rangnekar, S., & Barua, M. K. 2014.
Organizational climate, climate strength and work
engagement. Procedia-Social and Behavioral
Sciences, 133, 291-303.
- Choi C. 2009. A goal programming mixed-model line
balancing for processing time and physical
workload. Computers & Industrial Engineering 57
(2009) 395–400.
- Comper M. L. C., Dennerlein J. T., Evangelista G. dos S.,Silva P. R. and Padula R. S. 2017. Effectiveness of
job rotation for preventing work-related
musculoskeletal diseases: a cluster randomised
controlled trial. Comper MLC, et al. Occup Environ
Med 2017;74:545–552. doi:10.1136/oemed-
2016-104077.
- Çalışma ve Sosyal Güvenlik Bakanlığı, Çalışanların
Gürültü İle İlgili Risklerden Korunmalarına Dair
Yönetmelik (28 Temmuz 2013). Resmi
Gazete, Sayı: 28721.
- Dağdeviren M. vd. 2005. Çalışanların Toplam İş Yükü
Seviyelerinin Belirlenmesine Yönelk Bir Model Ve
Uygulaması. J. Fac. Eng. Arch. Gazi Univ. Vol 20, No
4, 517-525, 2005.
- Dolgui A., Kovalev S. Kovalyovc , M.Y.., Malyutina S. ve
Soukhal A. 2018. European Journal of Operational
Research 264 (2018) 200–211.
- Finia A.A.F., Akbarnezhad A., Rashidi T.H. ve Waller S.
T. 2018. Enhancing the safety of construction
crew by accounting for brain resource
requirements of activities in job assignment.
Automation in Construction 88 (2018) 31–43.
- Hignett, S., and McAtamney, L., 2000. Rapid Entire
Body Assessment (REBA). Applied Ergonomics,
31(2), 201-205.
- Jung H.S ve Jung H.S 2001. Establishment of overall
workload assessment technique for various tasks
and workplaces. International Journal of
Industrial Ergonomics 28 (2001) 341–353.
- Kara Y.vd., Montaj Hatlarında Çalışma Duruşlarının
Reba Yöntemi İle Analizi Ve Ergonomik Risk
Değerlendirmesi Notları
- Kara Y. vd. 2014. An integrated model to incorporate
ergonomics and resource restrictions into
assembly line balancing. International Journal of
Computer Integrated Manufacturing, 27:11, 997-
1007, DOI:10.1080/0951192X.2013.874575.
- Landau K., Rademacher H., Meschke H., Winter G.,
Schaub K., Grasmueck M., Moelbert I., Sommer M.
and Schulze J. 2008. Musculoskeletal disorders in
assembly jobs in the automotive industry with
special reference to age management aspects.
International Journal of Industrial Ergonomics 38
(2008) 561–576.
- Lin, L., C. G. Drury, and S. W. Kim. 2001. “Ergonomics
and Quality in Paced Assembly Lines.” Human
Factors and Ergonomics in Manufacturing 11 (4):
377–382.
- Majozi T. ve Zhu (Frank) X.X. 2005. A combined fuzzy
set theory and MILP approach in integration of planning and scheduling of batch plants—
Personnel evaluation and allocation. Computers
and Chemical Engineering 29 (2005) 2029–2047.
- Moussavi, S. E., Mahdjoub, M. and Grunder, O. 2016.
Reducing production cycle time by ergonomic
workforce scheduling. IFAC-PapersOnLine, 49(12),
419-424.
- Moon, I., R. Logendran, and J. Lee. 2009. “Integrated
Assembly Line Balancing with Resource
Restrictions.” International Journal of Production
Research 47 (19): 5525–5541.
- Mutlu Ö. ve Özgörmüş E. 2012. A fuzzy assembly line
balancing problem with physical workload
constraints. International Journal of Production
Research Vol. 50, No. 18, 15, 5281–5291.
- Otto A ve Battaïa O. 2017. Reducing physical
ergonomic risks at assembly lines by line
balancing and job rotation: A survey. Computers &
Industrial Engineering 111 (2017) 467–480.
- Otto, A., and Scholl, A. 2013. Reducing ergonomic
risks by job rotation scheduling. OR Spectrum,
35(3), 711-733.
- Polat, O., Mutlu, Ö., and Özgörmüş, E. 2018. A
Mathematical Model For Assembly Line Balancing
Problem Type 2 Under Ergonomic Workload
Constraint. The Ergonomics Open Journal, 11(1),
1-11.
- Seçkiner, S. U. and Kurt, M. 2008. Ant colony
optimization for the job rotation scheduling
problem. Applied Mathematics and
Computation, 201(1), 149-160.
- Song, J., Lee, C., Lee, W., Bahn, S., Jung, C. and Yun, M.
H. 2016. Development of a job rotation scheduling
algorithm for minimizing accumulated work load
per body parts. Work, 53(3), 511-521.
- Stanton, N., Hedge, A., Brookhuis, K., Salas, E. and
Hendrick 2005. H., 1st. Edition, Handbook of
Human Factors and Ergonomics Methods. Florida:
CRC Press.
- Wongwien T. ve Nanthavanij S. 2012. Ergonomic
Workforce Scheduling for Noisy Workstations
with Single or Multiple Workers per Workstation.
International Journal of the Computer, the
Internet and Management Vol.20 No.3
(September-December, 2012) pp 34-39.
- Xie B. ve Salvendy G. 2000. Review and reappraisal of
modeling and predicting mental workload in
single and multi-task environments. Work &
Stress, 2000, vol. 14, no. 1, 74–99.
- Tharmmaphornphilas, W., Green, B., Carnahan, B. J.
and Norman, B. A. 2003. Applying mathematical
modeling to create job rotation schedules for
minimizing occupational noise exposure. AIHA
Journal, 64(3), 401-405.
- Yoon, S. Y., Ko, J. and Jung, M. C. 2016. A model for
developing job rotation schedules that eliminate
sequential high workloads and minimize
between-worker variability in cumulative daily
workloads: Application to automotive assembly
lines. Applied ergonomics, 55, 8-15.