ENTEGRE BİR TEKSTİL İŞLETMESİNDE KİMYASAL AZALTIMI VE KİMYASAL DEĞİŞİMİ UYGULAMASI

Bu çalışmada ağırlıklı olarak pamuklu dokuma ve örgü kumaş üretimi yapan entegre bir tekstil işletmesinde kimyasal tüketimlerinin azaltılması ve çevresel açıdan riskli kimyasalların çevre dostu ikameleriyle değişimi amaçlanmıştır. Tesiste yerinde detaylı incelemeler ve veri toplama çalışmaları yapılmıştır. Prosesler bazında spesifik boyarmadde ve spesifik yardımcı kimyasal tüketimleri hesaplanmıştır. Tesisin spesifik boyarmadde ve yardımcı kimyasal tüketimleri literatürde ve Entegre Kirlilik Önleme ve Kontrol (IPPC) Tekstil Sektörü için Mevcut En İyi Teknikler Referans Dokümanında (BREF) yer alan benzer tesis verileriyle kıyaslanmıştır. Böylelikle tesisin boyarmadde ve kimyasal kullanımı açısından azaltım potansiyelleri değerlendirilmiştir. Ayrıca tesiste toplam 450 kimyasalın malzeme güvenlik bilgi formları (MGBF) biyodegradasyon oranları, toksik özellikleri ve mikrokirletici içerikleri açısından incelenmiştir. Buna göre 48 kimyasalın çevresel açıdan riskli olduğu belirlenmiş ve çevre dostu ikameleriyle değişimleri önerilmiştir. Tesiste yürütülen saha çalışmaları ve veri analizi çalışmaları sonucunda elde edilen bilgilerden yararlanılarak tesis yönetimi ve teknik personeliyle birlikte 10 adet kimyasal azaltım tekniğinin uygulanmasına karar verilmiştir. Belirlenen her bir teknik için azaltım oranları, yatırım maliyetleri ve geri ödeme süreleri belirlenmiştir. Tesiste belirlenen tekniklerin tümünün uygulanmasıyla boyarmadde ve yardımcı kimyasal tüketimlerinde %14,9-27,3 arasında azaltım sağlanabilineceği bulunmuştur. Uygulamaların geri ödeme süresinin 41 aydan daha kısa olacağı hesaplanmıştır.

IMPLEMENTATION OF CHEMICAL REDUCTION AND CHEMICAL SUBSTITUTION IN AN INTEGRATED TEXTILE FACILITY

In this study, it was aimed to reduce chemical consumption and replace environmentally risky chemicals with environmentally friendly substitutes in an integrated textile facility that mainly produces cotton woven and knitted fabrics. Detailed on-site investigations and data collection studies were carried out in the facility. Specific dyestuff and specific auxiliary chemical consumptions were calculated on the basis of processes. Specific dyestuff and auxiliary chemical consumptions of the facility were compared with similar textile facilities in the literature and Best Available Techniques Reference Document for the Integrated Pollution Prevention and Control (IPPC) Textile Industry (BREF). Thus, the reduction potentials of the facility in terms of dyestuff and chemical consumptions were evaluated. In addition, material safety data sheets (MSDS) of a total of 450 chemicals were examined in terms of biodegradation ratios, toxic properties and micropollutant contents. Accordingly, 48 chemicals were determined to be environmentally risky and their replacement with environmentally friendly substitutes was suggested. It was decided to implement 10 chemical reduction techniques together with the facility management and technical personnel, using the information obtained from field and data analysis studies carried out in the facility. For each determined technique, reduction ratios, investment costs and payback periods were calculated. It was found that with the application of all the techniques determined in the facility, a reduction of 14.9-27.3% could be achieved in the consumption of dyestuffs and auxiliary chemicals. Payback period of the practices could be less than 41 months.

___

  • Archna, L.K.N., Siva, K.R.R., 2012. Biological Methods of Dye Removal from Textile Effluents-A Review. J Biochem Technol 3, 177–180. https://doi.org/10.1080/10643389.2017.1393263
  • Arivithamani, N., Agnes, Mary. S., Senthil Kumar. M., Giri, Dev V.R., 2014. Keratin Hydrolysate as an Exhausting Agent in Textile Reactive Dyeing Process. Clean Techn Environ Policy 16, 1207–1215. https://doi.org/10.1007/s10098-014-0718-7
  • Australian Industry Group (AIG), 2012. Water Saving Fact Sheet: Textile Industry. Austrian Industry Group.
  • Barclay, S., Buckley, C., 2000. Waste Minimization Guide for the Textile Industry: A Step Towards Cleaner Production. The South African Water Research Commission, the Pollution Research Group, South African Republic.
  • Carmen, Z., Daniela, S., 2012. Textile Organic Dyes-Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents-A Critical Overview. In: Puzyn, T., (Ed.) Environmental Sciences: Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update. InTech Press, pp 55–86. ISBN 978-953-307-917-2
  • Danish Environmental Protection Agency (DEPA), 2002. Danish Experience Best Available Techniques-BAT in the Clothing and Textile Industry. Danish Environmental Protection Agency (DEPA), Working Report.
  • Desore, A., Narula, A.S., 2018. An Overview on Corporate Response Towards Sustainability Issues in Textile Industry. Environ Dev Sustain 20, 1439–1459. https://doi.org/10.1007/s10668-017-9949-1
  • Egyptian Environmental Affairs Agency (EEAA), 1999. Guidance Manual Cleaner Production for Textiles Water and Energy Conservation. Technical Co-operation Office for the Environment, UK.
  • European Commission (EC), 2000. European Commission Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Communities.
  • European Commission (EC), 2003. Integrated Pollution Prevention and Control (IPPC) reference document on Best Available Techniques for the Textile Industry (BREF). European Commission IPPC Bureau, Seville.
  • Intelligent Energy Europe (IEE), 2006. EMS-Textile Project: promotion of energy management practices in the textile industries of Greece, Portugal, Spain and Bulgaria, benchmarking information V.4. (IEE/04/113/S07.38648), European Commission, Brussels, Belgium.
  • Kalliala, E., Talvenmaa, P., 2000. Environmental Profile of Textile Wet Processing in Finland. J Clean Prod 8, 143–154. https://doi.org/10.1016/S0959-6526(99)00313-3
  • Kumar, P.S., Saravanan, A., 2017. Sustainable Wastewater Treatments in Textile Sector. In: Muthu, S.S., (Ed.) The Textile Institute Book Series: Sustainable Fibers And Textiles. Elsevier Woodhead Publishing, pp. 323–346. ISBN: 978-0-08-102042-5
  • Lebanese Cleaner Production Center (LCPC), 2010. Cleaner Production Guide for Textile Industries. Lebanese Cleaner Production Center, Beirut.
  • Marechal, A.M.L., Krizanec, B., Vajnhandl, S., Valh, J.V., 2012. Textile Finishing Industry as an Important Source of Organic Pollutants. Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update.
  • Mia, M.S., Hasan, F.K.M., Ashaduzzaman, A.M.R., Hasan, S.F., 2016. Effective Processing Time & Cost of Management of Dyes. Chemicals & Utilities (Heat, Gas, Electricity, Air & Water etc.) Used in Knit Dyeing For Combed & Compact Yarn Manufactured Fabric of Dyeing Textile Industries. Am J Energy Environ 1, 1–16.
  • Mor, S., Chhavi, M.K., Sushil, K.K., Ravindra, K., 2018. Assessment of Hydrothermally Modified Fly Ash for the Treatment of Methylene Blue Dye in the Textile Industry Wastewater. Environ Dev Sustain 20, 625–639. https://doi.org/10.1007/s10668-016-9902-8
  • Ogugbue, C.J., Sawidis, T., 2011. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas Hydrophila Isolated from Industrial Effluent. Biotechnol Res Int. https://doi.org/10.4061/2011/967925
  • Öztürk, E., 2014. Tekstil sektöründe entegre kirlilik önleme ve kontrolü ve temiz üretim uygulamaları, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 525s, Isparta.
  • Ozturk, E., Cinperi, N.C., 2018. Water Efficiency and Wastewater Reduction in an Integrated Woolen Textile Mill. J Clean Prod. 201, 686-696. https://doi.org/10.1016/j.jclepro.2018.08.021
  • Ozturk, E., Cinperi, N.C., Kitis, M., 2020. Green Textile Production: A Chemical Minimization and Substitution Study in a Woolen Fabric Production. Environ. Sci. Pollut. Res. 27, 45358-45373. https://doi.org/10.1007/s11356-020-10433-8
  • Ozturk, E., Koseoglu, H., Karaboyaci, M., Yigit, N.O., Yetis, U., Kitis, M., 2016. Minimization of Water and Chemical Use in a Cotton/Polyester Fabric Dyeing Textile Mill. J Clean Prod 130, 92–102. https://doi.org/10.1016/j.jclepro.2016.01.080
  • Ozturk, E., Yetis, U., Dilek, F.B., Demirer, G.N., 2009. A Chemical Substitution Study for a Wet Processing Textile Mill in Turkey. J Clean Prod 17, 239–247. https://doi.org/10.1016/j.jclepro.2008.05.001
  • Radej, B., Zakotnik, I., 2003. Environment as a Factor of National Competitiveness Inmanufacturing. Clean Techn Environ Policy 5, 254–264. https://doi.org/10.1007/s10098-003-0202-2
  • Tanapongpipat, A., Khamman, C., Pruksathorm, K., Hunsom, M., 2008. Process Modification in the Scouring Process of Textile Industry. J Clean Prod 16, 152–158. https://doi.org/10.1016/j.jclepro.2006.06.016
  • Thiry, M.C., 2011. Staying Alive: Making Textiles Sustainable. AATCC Review November/December.
  • United Nations Industrial Development Organization (UNIDO), 2012. Energy Efficiency in Electronic Motor Systems: Technology Saving Potentials and Policy Options for Developing Countries. United Nations Industrial Development Organization, Vienna.
  • United States Environmental Protection Agency (USEPA), 1996. Best Management Practices for Pollution Prevention in the Textile Industry. USEPA Office of Research Information, Cincinnati.
  • Yaseen, D.A., Scholz, M., 2018. Treatment of Synthetic Textile Wastewater Containing Dye Mixtures with Microcosms. Environ Sci Pollut Res 25, 1980–1997. https://doi.org/10.1007/s11356-017-0633-7
  • Yerüstü Su Kalitesi Yönetmeliği (YSKY), 2015. Yerüstü Su Kalitesi Yönetmeliği Resmi Gazete Sayı: 29327. Erişim linki: https://www.resmigazete.gov.tr/eskiler/2015/04/20150415-18.htm
  • Yu, J.Q., Chen, Y., Shao, S., Zhang, Y., Liu, S., Zhang, S., 2014. A Study on Establishing an Optimal Water Network in a Dyeing and Finishing Industrial Park. Clean Techn Environ Policy 16, 45–57. https://doi.org/10.1007/s10098-013-0592-8
  • Yukseler, H., Uzal, N., Sahinkaya, E., Kitis, M., Dilek, F.B., Yetis, U., 2017. Analysis of the Best Available Techniques for Wastewaters from a Denim Manufacturing Textile Mill. J Environ Manag 203, 1118–1125. https://doi.org/10.1016/j.jenvman.2017.03.041
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

AÇIK MADEN OCAKLARINDA İNSANSIZ HAVA ARACI (İHA) KULLANIMI

Abdurahman Yasin YİĞİT, Yunus KAYA, Halil İbrahim ŞENOL

LACTICASEIBACILLUS PARACASEI SUBSP. TOLERANS, LEVILACTOBACILLUS PARABREVIS VE LATILACTOBACILLUS CURVATUS SUŞLARININ SÜT TEMELLİ FERMENTE ÜRÜNLERDE TEKSTÜR, REOLOJİ VE MİKROYAPI ÜZERİNE ETKİLERİ

Nilgün ÖZDEMİR

AISI 304 PASLANMAZ ÇELİĞİN ELEKTRİK DİRENÇ NOKTA KAYNAĞI PARAMETRELERİNİN TAGUCHI YÖNTEMİYLE ÇOK AMAÇLI OPTİMİZASYONU

Elif COŞGUN ŞAHİN, Betul GULCIMEN CAKAN, Mümin TUTAR, Umut Onur ŞAHİN

ORGANİK RANKİNE ÇEVRİMİNDE ÇOKLU AMAÇ FONKSİYONLARINA BAĞLI OLARAK OPTİMUM AKIŞKANIN FARKLI ISI KAYNAĞI SICAKLIKLARI İÇİN BELİRLENMESİ

Sadık ATA, Ali KAHRAMAN, Remzi ŞAHİN

NANOTEKNOLOJİNİN YENİLEBİLİR FİLMLERE UYGULANMASI

Kadriye ŞEN, Kadir Gürbüz GÜNER

YATAĞAN-MUĞLA TÜRKİYE’ DE KURULU OLAN 1 MW ŞEBEKE BAĞLANTILI BİR PV GÜÇ SANTRALİNDE MATLAB-SIMULINK PORTALINDA STATCOM YOLUYLA PERFORMANS İYİLEŞTİRİLMESİ

Altan KALAY, Ali AĞÇAL, Koray ULGEN

ARTAN YÜK ALTINDAKİ ELASTOPLASTİK TAŞIYICI ÇELİK ÇERÇEVELERDE ANKASTRELİK MOMENTLERİNİN İNCELENMESİ

Harika Fatma AÇIKSARI, Hatip TOK

FARKLI FONKSİYONEL HAMMADDELERDEN ÜRETİLEN SOĞUKTAN KORUYUCU GİYSİLERİN ISI YALITIM VE SIVI TRANSFER ÖZELLİKLERİNİN İNCELENMESİ

Sultan ARAS ELİBÜYÜK, Mustafa ÇÖREKCİOĞLU, Asil YILMAZ, Fatma Filiz YILDIRIM, Perinur KOPTUR, Özlem DEMİR

İKLİM DEĞİŞİKLİĞİ ETKİSİ ALTINDA BURDUR GÖLÜ SU SEVİYESİ DEĞİŞİMLERİNİN İSTATİSTİKSEL OLARAK İNCELENMESİ

Murat PINARLIK, Abdulkadir İBİŞ, Zeliha SELEK

YER RADARI VERİLERİNDE YANAL YANSIMALARIN GÖÇ VE TERSİNE GÖÇ İŞLEMİ İLE ATILMASI

İsmail KAPLANVURAL