DAVRAZ DAĞI (ISPARTA) VE ÇEVRESİNDE KARBONAT AKİFERDE BULUNAN YER ALTI SUYUNUN HİDROJEOKİMYASAL GELİŞİMİ

Bu çalışmada Davraz Dağı (Isparta) karbonat akiferindeki yeraltısuyunun hidrojeokimyasal evrimini belirlemek amacıyla, bölgenin tektonik ve jeolojik özelliklerine bağlı olarak suların hidrojeokimyasal kavramsal modeli tanımlanmıştır. İnceleme alanından toplam 21 adet temsili yeraltısuyu örneği alınmış ve suların üç farklı fasiyeste olduğu belirlenmiştir: (a) Ca-HCO3, (b) Ca-Mg-HCO3 ve (c) Ca-Mg-HCO3-SO4. Ölçülen kısmen yüksek SO42- ve NO3- konsantrasyonları evsel ve tarımsal faaliyetlerle ilişkilidir. İnceleme alanında yeraltısuyu kimyasını denetleyen temel faktör su-kayaç etkileşimidir ve kalsit ve dolomit çözünmesi baskın jeokimyasal süreçlerdir. Çalışma alanındaki yeraltısuyu örneklerinin pCO2 değerlerinin, atmosferik pCO2’den daha yüksek olması karbonat çözünmesini hızlandırmış, su-kaya etkileşimi ile akiferdeki başlıca mineral fazları olan kalsit ve dolomit çözünerek suların Ca ve Mg konsantrasyonlarını artırmıştır. Suların SIkalsit ve SIdolomit değerlerinin pozitif olması bu minerallerin akifer ortamda yeraltısuyunun hidrokimyasal bileşimini kontrol ettiğini göstermektedir. Karbonat sistemi için mineral stabilite diyagramı çalışma alanındaki suların, Mg-kalsit ile dengede olduğunu ve bu mineralin derin rezervuarlardaki ana karbonat minerali olduğunu göstermektedir. Hidrojeokimyasal kavramsal modele göre karbonat kayaçlar üzerine düşen yağış suları, atmosferden bir miktar karbondioksiti alarak karbonik asit oluşturmuştur. Bu su yeraltına süzülürken, içinde dolaşım yaptığı karbonat kayaçlarda bulunan Ca2+, Mg2+ ve HCO3-’ü çözerek Ca-HCO3 ve Ca-Mg-HCO3 karakterinde suların oluşmasını sağlamıştır.

Davraz Mountain, Isparta, Carbonate Aquifer, Hydrogeochemical Process, Conceptual Model

In this study, to determine the hydrogeochemical evolution of the groundwater in the Davraz Mountain (Isparta) carbonate aquifer, the hydrogeochemical conceptual model of the waters was defined depending on the tectonic and geological characteristics of the region. A total of representative twenty-one groundwater samples were collected from the study area and it was determined that the waters were divided into three different groundwater facies: (a) Ca-HCO3, (b) Ca-Mg-HCO3, and (c) Ca-Mg-HCO3-SO4. In some samples partially high SO42- and NO3- concentrations are associated with domestic and agricultural activities. The main factor controlling the groundwater chemistry in the study area is the water-rock interaction and the dissolution of calcite and dolomite is the dominant geochemical process. The pCO2 values of the groundwater samples in the study area were higher than the atmospheric pCO2 also accelerated the carbonate dissolution. Thus, calcite and dolomite, the main mineral phases in the aquifer were dissolved by the water-rock interaction and increasing the Ca and Mg concentrations of the waters. The positive SIcalcite and SIdolomite values of the waters show that these minerals control the hydrochemical composition of the groundwater in the aquifer. The mineral stability diagram for the carbonate system shows that the waters in the study area are in equilibrium with Mg-calcite and that Mg-calcite is the main carbonate mineral in deep reservoirs. According to the hydrogeochemical conceptual model, precipitation waters falling on carbonate rocks took some carbon dioxide from the atmosphere and formed carbonic acid. While this water was infiltrated underground, it dissolved Ca2+, Mg2+, and HCO3- in the carbonate rocks in which it circulated, resulting in the formation of Ca-HCO3 and Ca-Mg-HCO3 waters.

___

  • Abubakar, İ.İ., Yağmurlu, F., 2017. Isparta Güneyindeki Tersiyer Kaya Birimlerinin Petrol Olanaklarının Araştırılması (GB‐Türkiye). Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 21, 1, 38‐50, doi: 10.19113/sdufbed.04704
  • Ağca, N., 2014. Spatial Variability of Groundwater Quality and Its Suitability for Drinking and Irrigation in the Amik Plain (South Turkey). Environmental Earth Science, 72, 4115-4130, doi: 10.1007/s12665-014-3305-7.
  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., Harris, C., 2001. Hydrochemical Characteristics of Aquifers Near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91-103, doi:10.1016/S0022-1694(00)00370-X.
  • Adji, T.N., Haryono, E., Fatchurohman, H., Oktama, R., 2017. Spatial and Temporal Hydrochemistry Variations of Karst Water in Gunung Sewu, Java, Indonesia. Environmental Earth Science, 76, 709, doi: 10.1007/s12665-017-7057-z
  • Akpataku, K.V., Gnazou, M.D.T., Bawa, L.M., Djaneye-Boundjou, G., Faye, S., 2016. Etude hydrogéochimique du système aquifère granito-gneissique dans la préfecture du Moyen-Mono, Togo. Afrique Science, 12 (2), 38-53. http://www.afriquescience.info/document.php?id=5978. ISSN 1813-548X.
  • Akpataku, K.V., Rai, S.P., Gnazoua, M.D.T., Tampo, L., Bawaa, L.M. Boundjoua, G.D., Fayeb, S., 2019. Hydrochemical and Isotopic Characterization of Groundwater in the Southeastern part of the Plateaux Region, Togo. Hydrological Sciences Journal, 64, 8, 983-1000. https://doi.org/10.1080/02626667.2019.1615067
  • Aly, A.A., Abbas, A.A., Benaabidate, L., 2011. Hydrochemistry and Quality of Groundwater Resources in Egypt: Case Study of the Egyptian Southern Oases. Water Security in the Mediterranean region: An International Evaluation of Management, Control and Governance Approaches, Chapter 17, 239254. Springer. DOI: 10.1007/978-94-007-1623-0_17
  • APHA-AWWA-WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21th Edition, American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). In: American Public Health Association (eds) Eaton A D, Clesceri L S, Rice E W and Greenberg A E, Washington, DC.
  • Appello, C.A.J., Postma, D., 1996. Geochemistry, Groundwater and Pollution. Balkema, Rotterdam, 536p.
  • Ashwin, K. R. N, Arulmozhi, S., Gopalan, A., Mageshkumar, P., Rangaraj, A., Panneerselvam, M., Nirmala Devi, B., Aravindhan, C., Prasath, E., David Ladu, N. S., 2022. Correlation, Regression Analysis, and Spatial Distribution Mapping of WQI for an Urban Lake in Noyyal River Basin in the Textile Capital of India. Advances in Materials Science and Engineering, 1687-8434, 3402951, https://doi.org/10.1155/2022/3402951
  • Back, W., Cherry, R.N., Hanshaw, B.B., 1966. Chemical equilibrium between the water and minerals of carbonate aquifer. Bulletin of the National Speleological Society, 28, 119-126.
  • Bahir, M., Ouhamdouch, S., Ouazar, D., Chehbouni, A., Ouarani, M., El Mountassir, O., 2021. Groundwater Quality of the Alluvial and Carbonate Aquifers of Essaouira Basin (Morocco). Carbonates and Evaporites, 36, 23, https://doi.org/10.1007/s13146-021-00697-7
  • Benamina, B., Azzaz, H., Benzater, B., Hamimed, A., 2022. The Hydrogeological Functioning of the Karstic Aquifer in Sidi Kada Mountains (North-Western Algeria) from Hydrochemical Records. Sigma Journal of Engineering and Natural Sciences, 40, 252-267, DOI: 10.14744/sigma.2022.00030
  • Buhmann, D., Dreybrodt, W., 1985. The Kinetics of Calcite Dissolution and Precipitation in Geologically Relevant Situations of Karst Areas. Chemical Geology, 48, 189–211. https://doi.org/10.1016/0009-2541(85)90024-5.
  • Calmbach, L., 1999. AquaChem Computer Code-Version 3.7: Aqueous Geochemical Analyses, Plotting and Modelling; Waterloo Hydrogeologic, Waterloo, Ontario, Canada, 184p.
  • Chidambaram, S., Prasanna M.V., Karmegam, U., Singaraja, C., Pethaperumal, S., Manivannan, R., Anandhan, P., Tirumalesh, K., 2011. Significance of pCO2 Values in Determining Carbonate Chemistry in Groundwater of Pondicherry Region, India. Frontiers of Earth Science, 5 (2), 197-206 DOI 10.1007/s11707-011-0170-5
  • Daniele, L., Vallejos, A., Corbella, M., Molina, L., Pulido-Bocsh, A., 2013. Hydrogeochemistry and Geochemical Simulations to Assess Water-rock interactions in Complex Carbonate Aquifers: The case of Aguadulce (SE Spain), Applied Geochemistry, 29, 43-54. doi:10.1016/j.apgeochem.2012.11.011
  • Dar, F.A., Perrin, J., Ahmed, S. Narayana, A. C., Riotte, J., 2015. Hydrogeochemical Characteristics of Karst Aquifer from a Semi-arid Region of Southern India and Impact of Rainfall Recharge on Groundwater Chemistry. Arabian Journal of Geoscience, 8, 2739-2750. https://doi.org/10.1007/s12517-014-1440-9
  • Demer, S., 2008. Isparta ve Yakın Çevresi Yeraltısularının Hidrojeolojik, Hidrojeokimyasal ve İzotop Jeokimyasal İncelenmesi ve İçme Suyu Kalitesinin İzlenmesi. Yayınlanmamış Doktora Tezi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 171s., Isparta.
  • Demer, S., 2010. Isparta Ovası Yeraltısularının İzotop Jeokimyası. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14-3, 285-292.
  • Demer, S., Hepdeniz, K., 2018. Isparta Ovasında (GB-Türkiye) Sulama Suyu Kalitesinin İstatistik ve Coğrafi Bilgi Sistemleri Kullanılarak Değerlendirilmesi. Türk Coğrafya Dergisi, 70, 109-122. DOI: 10.17211/tcd.397876.
  • Demer, S., Elitok, Ö., Memiş, Ü., 2019. Origin and Geochemical Evolution of Groundwaters at the Northeastern Extend of the Active Fethiye-Burdur Fault Zone within the Ophiolitic Teke Nappes, SW Turkey. Arabian Journal of Geosciences, 12, 783, https://doi.org/10.1007/s12517-019-4963-2
  • Dişli, E., 2018. Evaluation of Hydrogeochemical Processes for Waters’ Chemical Composition and Stable Isotope Investigation of Groundwater/Surface Water in Karst‑Dominated Terrain, the Upper Tigris River Basin, Turkey. Aquatic Geochemistry, 24, 363-396. https://doi.org/10.1007/s10498-019-09349-8
  • Dursun, İ., Yazıcı, N., 2022. Köppen-Trewartha ve Thornthwaite Yöntemlerine Göre Isparta Yöresi İklim Tipinin Belirlenmesi. Artvin Çoruh Üniversitesi, Doğal Afetler ve Çevre Dergisi, 8 (2), 264-279, DOI: 10.21324/dacd.1025029
  • Ford, D., Williams, P. W., 2007. Karst Hydrogeology and Geomorphology. Wiley, Chichester, pp 562
  • Gaillardet, J., Dupre´, B., Louvat, P., Alle`gre, C.J., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159 (1), 3-30. doi:10.1016/S0009-2541(99)00031-5
  • Gao, X., Li, X., Wang, W., Li, C., 2020. Human Activity and Hydrogeochemical Processes Relating to Groundwater Quality Degradation in the Yuncheng Basin, Northern China. International Journal of Environmental Research and Public Health, 17(3), 867. doi:10.3390/ijerph17030867
  • Gibbs, R.J., 1970. Mechanisms Controlling World’s Water Chemistry. Science, 170, 1088-1090.
  • Gil-Màrquez, J.M., Andreo, B., Mudarra, M., 2019. Combining Hydrodynamics, Hydrochemistry, and Environmental Isotopes to Understand the Hydrogeological Functioning of Evaporite-karst Springs. Journal of Hydrology, 576, 299-314. https://doi.org/10.1016/j.jhydrol.2019.06.055.
  • Goeppert, N., Goldscheider, N., Scholz, H., 2011. Karst Geomorphology of Carbonatic Conglomerates in the Folded Molasse Zone of the Northern Alps (Austria/Germany). Geomorphology, 130, 289-298. DOI: 10.1016/j.geomorph.2011.04.011.
  • Goldscheider, N., 2005. Karst Groundwater Vulnerability Mapping: Application of a New Method in the Swabian Alb, Germany. Hydrogeology Journal, 13 (4), 555-564. DOI: 10.1007/s10040-003-0291-3.
  • Goldscheider, N., Chen, Z., Auler, A.S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G, Moosdorf, N., Stevanovic, Z., Veni, G., 2020. Global Distribution of Carbonate Rocks and Karst Water Resources. Hydrogeology Journal, 28, 1661-1677. https://doi.org/10.1007/s10040-020-02139-5
  • Herms, I., Jódar, J., Soler, A., Lambán, L.J., Custodio, E., Núñez, J.A., Arnó, G., Parcerisa, D., Jorge-Sánchez, J., 2021. Identification of Natural and Anthropogenic Geochemical Processes Determining the Groundwater Quality in Port del Comte High Mountain Karst Aquifer (SE, Pyrenees). Water, 13, 2891. https://doi.org/10.3390/w13202891
  • Hill, C.A., Forti, R., 1997. Cave Minerals of the World. National Speleological Society, Huntsville, Alabama, 238 pp.
  • Hoaghia, M.A., Moldovan, A., Kovacs, E., Mirea, I.C., Kenesz, M., Brad, T., Cadar, O., Micle, V., Levei, E.A., Moldovan, O.T., 2021. Water Quality and Hydrogeochemical Characteristics of Some Karst Water Sources in Apuseni Mountains, Romania. Water, 13, 857. https://doi.org/10.3390/w13060857
  • Hounslow, A.W., 1995. Water Quality Data: Analysis and Interpretation. Lewis Publishers.
  • Irlayıcı, A., 1993. Isparta Ovası Hidrojeolojisi ve Yeraltısuları ile İlgili Çevre Sorunları. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Karagüzel, R., Irlayıcı, A., 1998. Groundwater Pollution in the Isparta Plain, Turkey. Environmental Geology, 34, 4, 303-308.
  • Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkins, E.H., Debraal, J.D., 1988. SOLMINEQ.88: A computer Program for Geochemical Modeling of Water-Rock Interactions. US Geol Surv Water-Resources Investigation Report 88-4227: 420 p.
  • Krawczyk, W.E., Ford, D.C., 2006. Correlating Specific Conductivity with Total Hardness in Limestone and Dolomite Karst Waters. Earth Surface Processes and Landforms, 31(2), 221-234. doi:10.1002/esp.1232
  • Kumar, M., Herbert, R., Pawan Kumar Jha, P., Deka, J.P., Rao, M.S., Ramanathan, A.L., Kumar, B., 2016. Understanding the Seasonal Dynamics of the Groundwater Hydrogeochemistry in National Capital Territory (NCT) of India Through Geochemical Modelling. Aquatic Geochemistry, 22, 211-224. https://doi.org/10.1007/s10498-016-9289-z
  • Lakshmanan, E., Kannan, R., Senthil Kumar, M., 2003. Major Ion Chemistry and Identification of Hydrogeochemical Processes of Ground Water in a part of Kancheepuram District, Tamil Nadu. India Environmental Geosciences, 10(4), 157-166. https://doi.org/10.1306/eg100403011
  • Langmuir, D., 1971. The Geochemistry of Some Carbonate Ground Waters in Central Pennsylvania. Geochimica et Cosmochimica Acta, 35, 1023-1045.
  • Leventeli, Y., 2010. Tahtalı Dağı’nın (Antalya) Hidrojeolojik Geleceği. Biyoloji Bilimleri Araştırma Dergisi, 3(1), 139-144.
  • Lippmann, E., 1973. Sedimentary Carbonate Minerals. Springer-Verlag, Berlin, 228 pp.
  • Liu, F., Song, X., Yang, L., Zhang, Y., Han, D., Ma, Y., Bu, H., 2015. Identifying the Origin and Geochemical Evolution of Groundwater Using Hydrochemistry and Stable Isotopes in the Subei Lake Basin, Ordos Energy Base, Northwestern China. Hydrology Earth System Sciences, 19, 551–565. https://doi.org/10.5194/hess-19-551-2015.
  • Mayo, A.L., Loucks, M.D., 1995. Solute and Isotopic Geochemistry and Groundwater Flow in the Central Wasatch Range, Utah, USA. Journal of Hydrology, 172, 31-59. https://doi.org/10.1016/0022-1694(95)02748-E
  • McLean, W., Jankowski, J., 2000. Groundwater Quality and Sustainability in an Alluvial Aquifer, Australia. In: Sililo et al (eds) Proc XXX IAH Congress on Groundwater: Past Achievements and Future Challenges. Cape Town South Africa 26th November-1st December 2000. AA Balkema, Rotterdam, Brookfield
  • Meybeck M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287, 401-428. https://doi.org/10.2475/ajs.287.5.401
  • Moral, F., Cruz-Sanjulian, J.J., Olias, M., 2008. Geochemical Evolution of Groundwater in the Carbonate Aquifers of Sierra de Segura (Betic Cordillera, southern Spain). Journal of Hydrology, 360, 281-296. doi:10.1016/j.jhydrol.2008.07.012
  • Mthembu, P.P., Elumalai, V., Brindha, K., Li, P., 2020. Hydrogeochemical Processes and Trace Metal Contamination in Groundwater: Impact on Human Health in the Maputaland Coastal Aquifer, South Africa. Exposure and Health, 12, 403-426. https://doi.org/10.1007/s12403-020-00369-2
  • Nasher, N.M.R., Ahmed, M.H., 2021. Groundwater Geochemistry and Hydrogeochemical Processes in the Lower Ganges-Brahmaputra-Meghna River Basin Areas, Bangladesh. Journal of Asian Earth Sciences, 6, 100062. https://doi.org/10.1016/j.jaesx.2021.100062
  • Nazik, L., Tuncer, K., 2010. Türkiye Karst Morfolojisinin Bölgesel Özellikleri. Türk Speleoloji Dergisi, Karst ve Mağara Araştırmaları Dergisi, 1, 7-19.
  • Nazik, L., Poyraz, M., 2017. Türkiye Karst Jeomorfolojisi Genelini Karakterize Eden Bir Bölge: Orta Anadolu Platoları Karst Kuşağı. Türk Coğrafya Dergisi, 68, 43-56. https://doi.org/10.17211/tcd.300414.
  • Njitchoua, R., Devera L., Fontesa, J.Ch., Naah, E., 1997. Geochemistry, Origin and Recharge Mechanisms of Groundwaters from the Garoua Sandstone Aquifer, Northen Cameroon. Journal of Hydrology, 190 (1), 123-140. doi:10.1016/S0022-1694(96)03049-1
  • Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Water Resources Investigations Report 99-4259, p. 310.
  • Petalas, C., 2017. Analysis of the Hydrogeological and Hydrochemical Characteristics of an Immature Karst Aquifer System. Environmental Processes, 4, 603–624. https://doi.org/10.1007/s40710-017-0250-y
  • Piper, A.M., 1944. A Graphical Procedure in the Geochemical Interpretation of Water Analysis. Transactions American Geophysical Union, 25, 6, 914–928. https://doi.org/10.1029/TR025i006p00914
  • Plummer, L.N., Wigley, T.M.L., Parkhurst, D.L., 1978. The Kinetics of Calcite Dissolution in CO2 Water Systems at 5–60 oC and 0.0-1.0 atm CO2. American Journal of Science, 278, 179-216.
  • Poisson, A., Akay, E., Dumont, J.F., Uysal, Ş., 1984. The Isparta Angle: A Mesozoic Paleorift in the Western Taurides. In: Tekeli, O., and Göncüoğlu, M.C. (eds.). Geology of the Taurus Belt International Symposium. 11-26, Ankara/Turkey.
  • Poisson, A., Yağmurlu, F., Bozcu, M., Şentürk, M., 2003. New Insights on the Tectonic Setting and Evolution Around the Apex of the Isparta Angle (SW Turkey). Geological Journal, 38, 257-282.
  • Robertson, A.H.F., Woodcock, N.H., 1984. The SW Segment of the Antalya Complex, Turkey as a Mesozoic–Tertiary Tethyan Continental Margin. In The Geological Evolution of the Eastern Mediterranean, Dixon J.F., Robertson A.H.F. (eds). Special Publications 17. Geological Society, London, 251–271.
  • Sappa, G., Barbieri, M., Ergul, S., Ferranti, F., 2012. Hydrogeological Conceptual Model of Groundwater from Carbonate Aquifers Using Environmental Isotopes (18O, 2H) and Chemical Tracers: A Case Study in Southern Latium Region, Central Italy. Journal of Water Resource and Protection, 4, 695-716. doi:10.4236/jwarp.2012.49080
  • Singh, A.K., Hasnain, S.I., 2002. Aspects of Weathering and Solute Acquisition Processes Controlling Chemistry of Sub-Alpine Proglacial Streams of Garhwal Himalaya, India. Hydrological Processes, 16, 835-849. https://doi.org/10.1002/hyp.367
  • Singh, A.K., Mondal, G.C., Kumar, S., Singh T.B., Tewary, B.K., Sinha, A., 2008. Major Ion Chemistry, Weathering Processes and Water Quality Assessment in Upper Catchment of Damodar River basin, India. Environmental Geology, 54, 745-758. https://doi.org/10.1007/s00254-007-0860-1
  • Skoglund, R.Ø., Lauritzen, S.E., 2011. Subglacial Maze Origin in Low-dip Marble Stripe Karst: Examples from Norway. Journal of Cave and Karst Studies, 73, 1, 31-43. DOI: 10.4311/jcks2009ES0108
  • Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd Edition, John Wiley and Sons, New York.
  • Su, H., Geng, D., Zhang, Z., Luo, Q., Wang, J., 2020. Assessment of the Impact of Natural and Anthropogenic Activities on the Groundwater Chemistry in Baotou City (North China) Using Geochemical Equilibrium and Multivariate Statistical Techniques. Environmental Science and Pollution Research, 27, 27651-27662, https://doi.org/10.1007/s11356-020-09117-0
  • Su, Y., Yang, F., Chen, Y., Zhang, P., Zhang, X., 2021. Optimization of Groundwater Exploitation in an Irrigation Area in the Arid Upper Peacock River, NW China. Implications for Sustainable Agriculture and Ecology. Sustainability, 13, 8903. https://doi.org/10.3390/su13168903.
  • Szramek, K., Walter, L.M., Kanduč, T., Ogrinc, N., 2011. Dolomite versus Calcite Weathering in Hydrogeochemically Diverse Watersheds Established on Bedded Carbonates (Sava and Soca Rivers, Slovenia). Aquatic Geochemistry, 17, 357-396. DOI 10.1007/s10498-011-9125-4
  • Şenel, M., 1984. Discussion on the Antalya Nappes. In: Tekeli, O., and Göncüoğlu, M.C. (eds.). Geology of the Taurus Belt International Symposium. 41‐51, Ankara/Turkey.
  • Şenel, M., 1997. 1/100.000 ölçekli Türkiye Jeoloji Haritaları, Isparta-J11 paftası, No: 14. MTA Jeoloji Etütleri Dairesi, Ankara.
  • Şenel, M., Gedik, I., Dalkılıç, H., Serdaroğlu, M., Bilgin, A.Z., Uğuz, M.F., Bölükbaşı, A.S., Korucu, M., Özgül, N., 1996. Isparta Bükümlü Doğusunda, Otokton ve Allokton Birimlerin Stratigrafisi (Batı Toroslar). MTA Dergisi, 118, 111-160.
  • Şener, Ş., Şener, E., 2016. Kovada Gölü’nün (Isparta) Hidrojeokimyasal İncelemesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 49-58, DOI: 10.21923/jesd.92987.
  • Van der Weijden, C.H., Pacheco, F.A.L., 2003. Hydrochemistry, Weathering and Weathering Rates on Madeira Island. Journal of Hydrology, 283, 122-145, doi:10.1016/S0022-1694(03)00245-2.
  • Wu, C., Wu, X., Lu, C., Sun, Q., He, X., Yan, L., Qin, T., 2021. Hydrogeochemical Characterization and Its Seasonal Changes of Groundwater Based on Self-Organizing Maps. Water, 13, 3065. https://doi.org/10.3390/w13213065
  • Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., Wang, G., 2020. Hydrochemical Characteristics of Groundwater and Dominant Water-Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836. https://doi.org/10.3390/w12030836
  • Zhou, Z., Zhang, G., Yan, M., Wang, J., 2012. Spatial Variability of the Shallow Groundwater Level and Its Chemistry Characteristicsin the Low Plain Around the Bohai Sea, North China. Environmental Monitoring and Assessment, 184, 3697-3710. DOI: 10.1007/s10661-011-2217-1.