ARM CORTEX-M3 MİKRODENETLEYİCİ KULLANIMI İLE ÇOK TAŞIYICILI GÖRÜNÜR IŞIK HABERLEŞME SİSTEMİ GELİŞTİRİLMESİ

Teknolojinin gelişmesiyle birlikte iletişim alanındaki kısıtlamalar ve ihtiyaçlar artmıştır. Özellikle elektromanyetik girişime ve sağlık sorunlarına sebep olabilecek, sınırlandırılmış ve lisanslanmış kablosuz iletişimin kullanımı, görünür ışık ile haberleşme teknolojilerini önemli kılmaktadır. Bu çalışmada, düşük maliyetli ve ticari kullanıma hazır elektronik bileşenlerin kullanımı ile ARM tabanlı özgün bir VLC sistem tasarımı gerçekleştirilmiştir. Bu kapsamda alıcı ve verici devreleri tasarlanmış, baskılı devre kartları ve bunlara uygun kutular üretilmiş, bunların sonucunda da standart tavan yüksekliğine sahip iç mekan uygulamalarında kullanılmak üzere bir sistem prototipi oluşturulmuştur. Tasarım aynı zamanda ARM tabanlı mikrodenetleyici kullanılarak, dikgen frekans bölmeli çoğullama modülasyonu (OFDM) ve dijital sinyal işleme uygulamalarının gerçekleştirildiği az sayıdaki uygulamadan birisidir. Sonuç olarak sistem iletişimi 1.8 m ile 3 m mesafeden 3.5 kbps veri hızında sağlanmıştır. Ayrıca sistem iletişimi, ışık kaynağının merkezinden direkt 85 cm mesafeye ve 50° açı yapacak şekilde başarı ile gerçekleştirilmiştir.

DEVELOPMENT OF MULTICARRIER VISIBLE LIGHT COMMUNICATION SYSTEM USING ARM CORTEX-M3 MICROCONTROLLER

With the development of technology, the constraints and the needs in the field of communication have increased. Especially, limited and licensed radio frequencies that can cause electromagnetic interference and health problems in the use of wireless communication make the visible light communication (VLC) technologies very important. In this study, an ARM based VLC system design has been realized to implement a unique product with the use of low-cost and commercial off-the-shelf electronic components. In this context, receiver and transmitter circuits are designed, printed circuit boards and appropriate enclosures have been produced, as a result, a system prototype has been created to use in interior applications with standard ceiling height. The design is also one of the few implementations in which orthogonal frequency division multiplexing (OFDM) modulation and digital signal processing applications are performed by using ARM based microcontroller. Consequently, the system communication is achieved at a data rate of 3.5 kbps from a distance 1.8 m to 3 m. Also the system communication is successfully performed from the center of the light source up to 85 cm distance on the direct side and up to an angle of 50° on the azimuth.

___

  • Afgani, M. Z., Haas, H., Elgala, H., Knipp, D., 2006. Visible Light Communication Using OFDM. Proceedings of the 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 129-134. Barcelona, Spain.
  • Baranda, J., Henarejos, P., Gavrincea, C. G., 2013. An SDR Implementation of a Visible Light Communication System Based on the IEEE 802.15. 7 Standard. Telecommunications (ICT), 2013 20th International Conference, 1-5. Casablanca, Morocco.
  • Dimitrov, S., Haas, H., 2015. Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, Cambridge University Press.
  • Ding, L., Liu, F., He, Y., Zhu, H., & Wang, Y., 2013, Design of Wireless Optical Access System using LED, Optics and Photonics Journal, 3(02), 148.
  • Haas, H., 2017. LiFi is a Paradigm-shifting 5G Technology. Reviews in Physics, 3, 26-31.
  • Islim, M. S., Ferreira, R. X., He, X., Xie, E., Videv, S., Viola, S., Watson, S., Bamiedakis, N., Penty, R. V., White, I. H., Kelly, A. E., Gu, E., Haas, H., and Dawson, M. D., 2017. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-based Visible Light Communication Using a GaN Violet micro-LED. Photonics Research, 5(2), A35-A43.
  • Khan, L. U., 2017, Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3(2), 78-88.
  • Kolade, O., Familua, A. D., & Cheng, L. 2020. Indoor Amplify-and-Forward Power-Line and Visible Light Communication Channel Model Based on a Semi-Hidden Markov Model. AEU-International Journal of Electronics and Communications, 153108.
  • Mesleh, R., Elgala, H., & Haas, H., 2012, Performance analysis of indoor OFDM optical wireless communication systems, Proceedings of the Wireless Communications and Networking Conference (WCNC), 1005-1010. Shanghai, China.
  • Samudika, D., Jayasinghe, L., Gunathilaka, K. E., Rumesh, Y., Weerasuriya, R., Dias, D., 2016. Stereo Audio Streaming via Visible Light. Proceedings of the Moratuwa Engineering Research Conference (MERCon), 132-136. Moratuwa, Sri Lanka.
  • Sharma, R., Kumari, A. C., Aggarwal, M., & Ahuja, S. 2018. Optimal LED deployment for mobile indoor visible light communication system: Performance analysis. AEU-International Journal of Electronics and Communications, 83, 427-432.
  • Tsonev, D., Videv, S., Haas, H., 2015. Towards a 100 Gb/s Visible Light Wireless Access Network. Optics express, 23(2), 1627-1637.
  • Videv, S., & Haas, H., 2014, Practical space shift keying VLC system, Proceedings of the Wireless Communications and Networking Conference (WCNC), 405-409. Istanbul, Turkey.
  • Zuhdi, M., Wafi, A., 2015. High Performance Drive Circuits for Integrated microLED/CMOS Arrays for Visible Light Communication (VLC) (Doctoral dissertation). Edinburgh University, Edinburgh.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi