4D BASKI TEKNOLOJİLERİ VE TEKSTİLDE KULLANIM ALANLARI

3D baskı teknolojisi, sanal ortamda üç boyutlu koordinatlarda tasarlanmış bir nesneye ait dijital verilerden statik yapılar yapmak için kullanılan bir teknolojidir. 4D baskı teknolojisi ise farklı dış uyaranlar ve bir iç uyarana cevap veren ve zaman veya boyut değişimi, fiziksel veya kimyasal değişim ya da şekil değişikliği ile sonuçlanan fiziksel bir nesne oluşturan katmanlı üretim süreci olarak tanımlanmıştır. 4D baskı uygulamaları organ ve doku mühendisliği, biyomedikal cihazlar, güvenlik, optik için hassas desenli yüzeylerin üretimi, akıllı vanalar, elektronik cihazlar, çok-yönlü özelliklere sahip yapılar ve yumuşak aktüatörler, elektromekanik valfler ve akıllı giysiler gibi çeşitli alanlarda kullanılmaktadır. 4D yapıların tanımına dayanarak, 4D tekstiller terimi zamanla şekil ve fonksiyon değiştiren tekstiller olarak tanımlanabilir. 4D tekstiller, konvansiyonel malzemeler kullanılarak üretilen yapılarla kıyaslandığında kullanılan tekstil malzemelerinin doğası gereği doğrudan ekstra özellikler kazanmış olacaklardır. Ek olarak, konvansiyonel tekstil üretim yöntemleri ile kıyaslandığında malzeme ve zaman tasarrufu sağlamakta ve çalışan konforunu artırmaktadırlar. Aynı zamanda, enerji depolama ve güç aktarımı amacıyla kullanılabilmeleri de bir diğer avantajlarıdır. Bu çalışmada, 4D baskı teknolojileri, kullanılan malzemeler, üretim yöntemleri hakkında bilgi ve 4D baskı teknolojileri kullanılarak üretilen tekstil yapıları ile ilgili örnekler verilmiştir.

4D PRINTING TECHNOLOGIES AND APPLICATION AREAS IN TEXTILES

3D printing technology is a technology used to make static structures from digital data of an object designed in three-dimensional coordinates in a virtual environment. 4D printing technology, on the other hand, is defined as the additive manufacturing process that creates a physical object that responds to different external stimuli and an internal stimulus and results in time or size change, physical or chemical change or shape change. 4D printing applications are used in various fields such as organ and tissue engineering, biomedical devices, safety, the production of sensitive surfaces for optics, smart valves, electronic devices, structures with multi-directional properties and soft actuators, electromechanical valves, and smart clothes. Based on the definition of 4D structures, the term 4D textiles can be defined as textiles that change shape and function over time. 4D textiles will gain extra features due to the nature of the textile materials used when compared to structures produced using conventional materials. In addition, they save material and time and increase employee comfort when compared to conventional textile production methods. It is also another advantage that they can be used for energy storage and power transfer purposes. In this study, 4D printing technologies, materials used, production methods are explained, and examples of textile structures produced using 4D printing technologies are given.

___

  • 4D Printing Market Forecast to 2027, 2021. https://www.globenewswire.com/en/news-release/ 2021/10/19/2316785/0/ en/Global-4D-Printing-Market-is-Expected-to-Reach-US-489-2-Mn-by-2027-With-a-Growing-CAGR-of-42-1.html. Erişim tarihi: 04.12.2021
  • Active Shoes. https://selfassemblylab.mit.edu/active-shoes. Erişim tarihi: 04.03.2020.
  • Adidas Ultracraft 4D. https://www.carbon3d.com/adidas-ultracraft-4d/. Erişim tarihi: 04.12.2021
  • Ahmed, A., Arya, S., Gupta, V., Furukawa, H., Khosla, A., 2021. 4D printing: Fundamentals, Materials, Applications and Challenges. Polymer, 123926.
  • Ambulo, C. P., Burroughs, J. J., Boothby, J. M., Kim, H., Shankar, M. R., Ware, T. H., 2017. Four-Dimensional Printing of Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 9(42), 37332-37339.
  • Atalay, H. A., Değirmentepe, R. B., Bozkurt, M., Can, O., Canat, H. L., Altunrende, F., 2016. 3D Teknolojinin Tıpta ve Üroloji’de Kulanım Alanları. Endoüroloji Bülteni, 9, 65-71.
  • Aydın, K., Karamolla, M., 2019. Katmanlı İmalat ile Üretilen Metal Malzemelerin Kaynak Kabiliyeti. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(4), 1610-1620.
  • Bormann, T., Schumacher, R., Müller, B., Mertmann, M., de Wild, M., 2012. Tailoring Selective Laser Melting Process Parameters for NiTi Implants. Journal of Materials Engineering and Performance, 21(12), 2519-2524.
  • Börklü, H. R., Yıldırım, A. K., Sezer, H. K. 2016. Hızlı Prototip Oluşturmada Karşılaşılan Problemler ve Çözüm Önerileri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 4(4), 309-319.
  • Cano-Vicent, A., Tambuwala, M. M., Hassan, S. S., Barh, D., Aljabali, A. A., Birkett, M., ... & Serrano-Aroca, Á., 2021. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Additive Manufacturing, 102378.
  • Champeau, M., Heinze, D. A., Viana, T. N., de Souza, E. R., Chinellato, A. C., Titotto, S., 2020. 4D Printing of Hydrogels: A Review. Advanced Functional Materials, 30(31), 1910606.
  • Chakraborty, J. N., Dhaka, P. K., Sethi, A. V., Arif, M., 2017. Technology and Application of Shape Memory Polymers in Textiles. Research Journal of Textile and Apparel. 21(2), 86-100.
  • Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., ... & Liu, L., 2020. 4D Printing: A Review on Recent Progresses. Micromachines, 11(9), 796.
  • Demir, S., Sezer, H. K., Özdemir, V., 2018. Topolojik Nesnelerin FDM Yöntemiyle Üretimi. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 76-87.
  • Deshmukh, K., Houkan, M. T., AlMaadeed, M. A., Sadasivuni, K. K., 2020. Introduction to 3D and 4D Printing Technology: State of the Art and Recent Trends. K. K. Sadasivuni, K. Deshmukh and M. A. Almaadeed (Edt.), 3D and 4D Printing of Polymer Nanocomposite Materials, içinde (s. 1-24). Elsevier.
  • Gardan, J., 2019. Smart Materials in Additive Manufacturing: State of The Art and Trends. Virtual and Physical Prototyping, 14(1), 1-18.
  • Hager, M. D., Bode, S., Weber, C., & Schubert, U. S., 2015. Shape Memory Polymers: Past, Present and Future Developments. Progress in Polymer Science, 49, 3-33.
  • Hu, J., Meng, H., Li, G., Ibekwe, S. I., 2012. A Review of Stimuli-Responsive Polymers for Smart Textile Applications. Smart Materials and Structures, 21(5), 053001.
  • Joshi, S., Rawat, K., Karunakaran, C., Rajamohan, V., Mathew, A. T., Koziol, K., ... & Balan, A. S. S., 2020. 4D Printing of Materials for the Future: Opportunities and Challenges. Applied Materials Today, 18, 100490.
  • Khoo, Z. X., Teoh, J. E. M., Liu, Y., Chua, C. K., Yang, S., An, J., ... & Yeong, W. Y., 2015. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual and Physical Prototyping, 10(3), 103-122.
  • Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., ... & Qi, H. J., 2019. Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 29(2), 1805290.
  • Konuk Ege, G., Sürmen, H. H., Bektaş, B., Akkuş, N., 2019. 4D Baskı Teknolojisi ve Biyobaskı Alanındaki Uygulamaları. 4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry, 516-524.
  • Ledbury, J., 2018. Design and Product Development in High-Performance Apparel. J. Mcloughlin, T. Sabir (Edt), High-Performance Apparel: Materials, Development, and Applications, içinde (s. 175-189). Woodhead Publishing.
  • Leist, S. K., Gao, D., Chiou, R., Zhou, J., 2017. Investigating the Shape Memory Properties of 4D Printed Polyactic Acid (PLA) and the Concept of 4D Printing onto Nylon Fabrics for the Creation of Smart Textiles. Virtual and Physical Prototyping, 12(4), 290-300.
  • Li, M. H., Keller, P., 2006. Artificial Muscles Based on Liquid Crystal Elastomers. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1847), 2763-2777.
  • Li, X., Shang, J., Wang, Z., 2017. Intelligent Materials: a Review of Applications in 4D Printing. Assembly Automation, 37(2), 170-185.
  • Mohol, S. S., Sharma, V., 2021. Functional Applications of 4D Printing: A review. Rapid Prototyping Journal, 27(8), 1501-1522.
  • Momeni, F., Liu, X., Ni, J., 2017. A Review of 4D Printing. Materials & Design, 122, 42-79.
  • Monzón, M. D., Paz, R., Pei, E., Ortega, F., Suárez, L. A., Ortega, Z., ... & Clow, N., 2017. 4D Printing: Processability and Measurement of Recovery Force in Shape Memory Polymers. The International Journal of Advanced Manufacturing Technology, 89(5-8), 1827-1836.
  • Nkomo, N., 2018. A Review of 4D Printing Technology and Future Trends. Eleventh South African Conference on Computational and Applied Mechanics, 202-211.
  • Pei, E., Loh, G. H., Harrison, D., de Amorim Almeida, H., Verona, M. D. M., Paz, R., 2017. A Study of 4D Printing and Functionally Graded Additive Manufacturing. Assembly Automation, 37(2), 147-153.
  • Peters, S., Drewes, D., 2019. Materials in Progress: Innovations in Designers and Architects. Birkhauser Verlag Gmbh.
  • Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., Stucker, B. E., 2013. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. Journal of Materials Engineering and Performance, 22(12), 3872-3883.
  • Ren, L., Li, B., He, Y., Song, Z., Zhou, X., Liu, Q., Ren, L,. 2020. Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Interfaces, 12(13), 15562-15572.
  • Schmelzeisen, D., Koch, H., Pastore, C., Gries, T. 2018. 4D Textiles: Hybrid Textile Structures that can Change Structural Form with Time by 3D Printing. Y. Kyosev, B. Mahltig, A. Schwarz-Pfeiffer (Edt), Narrow and Smart Textiles, içinde (s. 189-201). Springer, Cham.
  • Shen, B., Erol, O., Fang, L., Kang, S. H., 2020. Programming the Time into 3D Printing: Current Advances and Future Directions in 4D Printing. Multifunctional Materials, 3(1), 012001.
  • Shin, D. G., Kim, T. H., Kim, D. E., 2017. Review of 4D Printing Materials and Their Properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 349-357.
  • Singholi, A. K. S., Sharma, A., 2020. Recent Advancement and Research Possibilities in 4D Printing Technology. Materialwissenschaft und Werkstofftechnik, 51(10), 1332-1340.
  • Skynfeel Apparel, http://www.paulinevandongen.nl/project/skynfeel-apparel/ Erişim tarihi: 15 Kasım 2020.
  • Suriano, R., Bernasconi, R., Magagnin, L., Levi, M., 2019. 4D Printing of Smart Stimuli-Responsive Polymers. Journal of The Electrochemical Society, 166(9), B3274.
  • Thakur, S., 2017. Shape Memory Polymers for Smart Textile Applications. B. Kumar, S. Thakur (Edt.), Textiles for Advanced Applications, içinde [s. 323-336]. BoD- Books on Demand.
  • Tibbits, S., 2014. 4D Printing: Multi‐Material Shape Change. Architectural Design, 84(1), 116-121.
  • Truby, R.L., Lewis, J.A., 2016. Printing Soft Matter in Three Dimensions, Nature, 540(7633), 371-378.
  • Ula, S. W., Traugutt, N. A., Volpe, R. H., Patel, R. R., Yu, K., Yakacki, C. M., 2018. Liquid Crystal Elastomers: An Introduction and Review of Emerging Technologies. Liquid Crystals Reviews, 6(1), 78-107.
  • Xie, P., Zhang, R., 2005. Liquid Crystal Elastomers, Networks and Gels: Advanced Smart Materials. Journal of Materials Chemistry, 15(26), 2529-2550.
  • Yalçın, B., Ergene, B., 2017. Endüstride Yeni Eğilim Olan 3-d Eklemeli Imalat Yöntemi ve Metalurjisi. Uluslararası Teknolojik Bilimler Dergisi, 9(3), 65-88.
  • Zafar, M. Q., Zhao, H., 2019. 4D Printing: Future Insight in Additive Manufacturing. Metals and Materials International, 26(5), 564-585.
  • Zarek, M., Layani, M., Eliazar, S., Mansour, N., Cooperstein, I., Shukrun, E., ... & Magdassi, S., 2016. 4D Printing Shape Memory Polymers for Dynamic Jewellery and Fashionwear. Virtual and Physical Prototyping, 11(4), 263-270.
  • Zhang, C., Lu, X., Fei, G., Wang, Z., Xia, H., Zhao, Y., 2019. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS Applied Materials & İnterfaces, 11(47), 44774-44782.
  • Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., Fu, J., Cui, H., 2015. From 3D to 4D Printing: Approaches and Typical Applications. Journal of Mechanical Science and Technology, 29(10), 4281-4288.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

SOĞUK ZİNCİR LOJİSTİĞİNDE GEZGİN SATIN ALICI PROBLEMİ İÇİN İKİ AŞAMALI BİR ÇÖZÜM YÖNTEMİ

İlker KÜÇÜKOĞLU

KÜÇÜK AKSU ÇAYI’NDA HIDROLIK MODELE DAYALI YAPISAL TAŞKIN ANALİZİ

Tahsin BAYKAL, Özlem TERZİ, Erhan ŞENER

KARGI-İSKİLİP EOSEN YAŞLI DENİZALTI YELPAZE SİSTEMLERİNİN DEPOLANMA ÖZELLİKLERİ VE TEKTONO-SEDİMANTER GELİŞİMİ (ÇORUM, K-TÜRKİYE)

Murat ŞENTÜRK, Ezher TAGLİASACCHİ, Tülay ALTAY, Fuzuli YAGMURLU

ÜSTYAPI DURUM İNDEKSİ VE SÜRÜŞ KONFORU ARASINDAKİ İLİŞKİLERİN MODELLENMESİ

Ufuk KIRBAŞ, Mustafa KARASAHİN

HTLS İLETKENLERİN TEKNOEKONOMİK ANALİZİ

Yiğit AKYOL, Altuğ BOZKURT

TAŞIT AERODİNAMİĞİNDE KULLANILAN AHMED CİSMİNİN AKIŞ MODELİ İÇİN PRİZMATİK AĞ KATMANI OLUŞTURURKEN İZLENECEK STRATEJİ

Sinan KEİYİNCİ, Mustafa Atakan AKAR, Oğuz BAŞ, Mustafa ÖZCANLI

ARKEOLOJİK ALANLARDA İNSANSIZ HAVA ARACI (İHA) KULLANARAK COĞRAFİ BİLGİ SİSTEMİ (CBS) İÇİN VERİ TABANI OLUŞTURMA: ANEMURİUM ANTİK KENT ÖRNEĞİ

Fanise USLU KOÇYİĞİT, Süleyman Savaş DURDURAN, Tansu ALKAN

MİKROPLASTİK KİRLİLİĞİNE SENTETİK ESASLI TEKSTİL ÜRÜNLERİNİN YIKAMA İŞLEMLERİNİN ETKİSİ

Fatma GÜNDÜZ BALPETEK, Aslı DEMİR, Esen ÖZDOĞAN

HATA TÜRÜ VE ETKİLERİ ANALİZİ(HTEA): İMALAT ATÖLYESİNDE ANLIK HATA VE DURUM İZLEME UYGULAMASI

Ceren ARSLAN KAZAN, Halil KORUCA, Buket KARATOP

ANTALYA VE ISPARTA YAĞIŞ VERİLERİNİN TREND ANALİZİ

Elif Gülen KIR, Veysel GÜLDAL