YÜKSEK BLOKAJLI KANAL İÇİNDE ART ARDA İKİ SİLİNDİR ETRAFINDA SÜREKLİ LAMİNER AKIŞ İÇİN ISI VE AKIŞ KARAKTERİSTİKLERİNİN NÜMERİK OLARAK İNCELENMESİ

Bu çalışmada, art arda silindirler etrafında yüksek blokaj etkisinde laminer akış için ısı ve akış karakteristikleri nümerik olarak incelenmiştir. Blokaj oranı (β=B/H) 0.6 ve Reynolds sayısı (Re) 40 olarak belirlenmiştir. Silindirler arası mesafe sabit silindir çapı ile orantılı olarak 0.2-0.7-1.0-1.5-3.0-4.0 D olarak seçilmiştir. Ön ve arka silindirler için tüm silindirler arası mesafe oranlarında statik basınç, kayma gerilmesi ve ısı transfer katsayıları değerleri hesaplanıp tartışılmıştır. Ayrıca çift silindir için elde edilen sonuçlar, aynı senaryolar tek silindir için elde edilen sonuçlar ile karşılaştırılmıştır. Hesaplama sonuçlarına göre akım çizgi ve vortekslerin direk olarak hidrodinamik ve termal parametreleri etkilediği anlaşılmıştır. Silindir etrafındaki ayrılmalar ise kayma gerilmesi ve ısı transferi değerlerini etkilemiştir.

NUMERICAL INVESTIGATION OF HEAT AND FLOW CHARACTERISTICS CONTINUOUS LAMINAR CHANNEL FLOW WITH HIGH BLOCKAGE AROUND TWO TANDEM CIRCULAR CYLINDERS

In this study, heat and flow characteristics of laminar steady flow across two tandem circular cylinders (CC) were numerically investigated. The blockage ratio (β=B/H) were held 0.6 and the Reynolds number (Re) was 40. The distance between circular cylinders were chosen 0.2-0.7-1.0-1.5-3.0-4.0 D and static pressure, shear stress and heat transfer coefficients on the upstream (front) and downstream (back) cylinders were calculated and discussed. Otherwise the results that were obtained for two tandem cylinders were compared with the results that were obtained for single cylinder for the same scenarios. According to the calculations it is understood that wakes and vortices between cylinders directly affect hydrodynamic and thermal parameters. Separations of the flow around the cylinder also effect on shear stress and convective heat transfer values.

___

  • 1. Cengel, Y. A. 2003. Heat Transfer: A Practical Approach, McGraw-Hill, ISBN no: 0072458933.
  • 2. Zdravkovich, M. M. 1977. “Review of Flow Interference Between Circular Cylinders in Cross Flow,” ASME Journal of FLUİDS Engineering, vol. 99, p. 618-633.
  • 3. Chen, J. H., Pritchard, W. G., Tavener, S. J. 1995. “Bifurcation of Flow Past a Cylinder Between Paralel Planes,” J. Fluid Mech., vol. 284, p. 23–41.
  • 4. Slaoutti, A., Stansby, P. K. 1992. “Flow Around Two Circular Cylinders by the Random-Vortex Method,” Journal of Fluids and Structures, vol. 6, p. 641-670.
  • 5. Li, J., Chambarel, A., Donneaud, M., Martin, R. 1991. “Numerical Study of Laminar Flow Past One and Two Cylinders,” Comput. Fluids, vol. 19, p. 155–170.
  • 6. Mittal, S., Kumar, V., Raghuvashi, A. 1997. “Unsteady Incompressible Flows Past Periodic Arrays of Cylinders in Tandem and Staggered Arrangement,” Comput. Mech., vol. 25, p. 1315-1344.
  • 7. Meneghini, J. R., Saltara, F., Siqueira, C. L. R., Ferrari, J. A., Jr. 2001. “Numerical Simulation of Flow Interference Between Two Circular Cylinders in Tandem and Side-by-Side Arrangements,” J. Fluids Struct., vol. 15, p. 327-350.
  • 8. Chakraborty, J., Verma, N., Chhabra, R. P. 2004. “Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study,” Chem. Eng. Process. vol. 43, p. 1529–1537.
  • 9. Sharman, B., Lien, F. S., Davidson, L., Norberg, C. 2005. “Numerical Predictions of Low Reynolds Number Flows Over Two Tandem Circular Cylinders,” Int. J. Numer Methods Fluids, vol. 47, p. 423–47.
  • 10. Griffith, M. D., Thompson, M. C., Leweke, T., Hourigan, K., Anderson, W. P. 2007. “Wake Behaviour And Instability of Flow Through a Partially Blocked Channel,” Journal of Fluid Mechanics, vol. 582, p. 319-340.
  • 11. Zhou, S., Zhau, Z., Yan, S., Yuan, Y., Xi, G. 2014. “Numerical Study on Characteristics of Flow and Thermal Fields of Tandem Cylinders,” Taylor and Francis, Heat Transfer Engineering, vol. 35 (11-12), p. 1144-1151.
  • 12. Patil, C. R., Bharti, P. R., Chhabra, R. P. 2008. “Steady Flow of Power Law Fluids over a pair of Cylinders in Tandem Arrangement,” Ind. Eng. Chem. Res., vol. 47, p. 1660-1683.
  • 13. Singha, S., Sinhamahapatra, K. P. 2010. “High Resolution Numerical Simulation of Low Reynolds Number Incompressible Flow About Two Cylinders in Tandem,” Journal of Fluids Engineering, vol. 132, p. 1-10.
  • 14. Harichandan, A. B., Roy, A. 2010. “Numerical İnvestigation Of Low Reynolds Number Flow Past Two And Three Circular Cylinders Using Unstructured Grid CFR Scheme,” International Journal of Heat And Fluid Flow, vol. 31, p. 154–171.
  • 15. Gao, Y., Wang, X., Tan, D. S., Keat, T. S. 2013. “Particle Image Velocimetry Technique Measurements of the Near Wake Behind a Cylinder-Pair of Unequal Diameters,” Fluid Dyn. Res., vol. 45, 045504.
  • 16. Jiang, R., Lin, J., Ku, X. 2014. Numerical Prediction of Flows Past Two Tandem Cylinders of Different Diameters under Unconfined and Confined Flows,” The Japan Society of Fluid Mechanics, Fluid Dyn. Res., vol. 46, 025506.
  • 17. Incropera, F. P., De Witt, D. P. 2001. Fundamentals of Heat and Mass Transfer, Wiley, New York, USA.
  • 18. Sahin, M., Owens, R. G. 2004. “ A numerical Investigations of Wall Effects up to High Blockage Ratios on Two-Dimensional Flow Past a Confined Circular Cylinder,” Physics of Fluids, vol. 16, p. 1305-1320.