YARIM TORUS ŞEKİLLİ BİR SÜREKLİ DEĞİŞKEN AKTARMA SİSTEMİNİN TASARIMI, ANALİZİ VE İMALATI

Bu çalışma, mekanik preslerde kullanılmaya yönelik bir yarım torus şekilli sürekli değişken aktarma (SDA) sisteminin tasarımı, analizi ve imalatı ile ilgilidir. Burada, servo mekanik preslere benzer şekilde, klasik mekanik preslerde de hız değişimi ve koç kontrolü gerçekleştirmek için bir SDA sisteminin kullanımı önerilmiştir. Bunun için, hızlı çevrim oranı değişimine imkân sağlayan bir kontrol mekanizması tasarlanmıştır. Ayrıca disklerin temas noktalarında oluşan Hertz gerilmeleri, sonlu elemanlar yöntemi ile analiz edilmiştir. Nihayetinde, SDA sisteminin ve mekanik presin dinamik karakteristiğini yansıtacak bir deney düzeneğinin imalatı gerçekleştirilmiştir. Böylelikle, ülkemizde yerli imkânlarla ilk defa bir toroidal SDA test sistemi üretilmiştir.

DESIGN, ANALYSIS AND PRODUCTION OF A HALF TOROIDAL CONTINUOUSLY VARIABLE TRANSMISSION SYSTEM

This work is on the design, analysis and manufacturing of a half toroidal continuously variable transmission (CVT) system considered for the use in mechanical presses. Similar to the presses equipped with servo system the use of a CVT to perform speed variations and ram control is proposed in this work. To this end a control mechanism enabling fast speed ratio changes is designed. Moreover, the Hertz stresses on the disc contact points are analyzed. Finally, an experimental setup by which the characteristics of the CVT system and mechanical press can be analyzed is constructed. In this way, this is the first toroidal CVT setup manufactured in our country.

___

  • 1. Du, R., Guo, W. Z. 2003. “The Design of a New Metal Forming Pres with Controllable Mechanism,” Journal of Mechanical Design, Transactions of ASME, vol. 12, p. 582-592.
  • 2. Meng, C. F., Zhang, C., Lu, Y. H., Shen, Z. G. 2004. “Optimal Design and Control of a Novel Press with an Extra Motor,” Mechanism and Machine Theory, vol. 39, p. 811-818.
  • 3. Soong, R. C. 2010. “A New Design Method for Single DOF Mechanical Presses with Variable Speeds and Length-Adjustable Driving Links,” Mechanism and Machine Theory, vol. 45, p. 495-510.
  • 4. Li, H., Zhang, Y. 2010. “Seven-Bar Mechanical Pres with Hybrid-Driven Mechanism for Deep Drawing, Part 1: Kinematic Analysis and Optimum Design,” Journal of Mechanical Science and Technology, vol. 24 (11), p. 2153-2160.
  • 5. Li, H., Zhang, Y. 2010. “Seven-Bar Mechanical Pres with Hybrid-Driven Mechanism for Deep Drawing, Part 2: Dynamic Modeling and Simulation,” Journal of Mechanical Science and Technology, vol. 24 (11), p. 2153-2160.
  • 6. Yildiz, A., Kopmaz, O. 2015. “Dynamic Analysis of a Mechanical Press Equipped with a Half-Toroidal Continuously Variable Transmission,” Int. J. Materials and Product Technology, vol. 50 (1), p. 22-36.
  • 7. Carbone, G., Mangialarda, L., Mantriota, G. 2004. “A Comparison of the Performances of Full and Half Toroidal Traction Drives,” Mechanism and Machine Theory, vol. 39, p. 921-942.
  • 8. Yıldız, A., Kopmaz, O. 2014. “Yarım Toroidal SDA Sisteminde Temas Bölgesi Gerilmelerinin İncelenmesi,” 7. Otomotiv Teknolojileri Kongresi, 26-27 Mayıs 2014, Bursa.
  • 9. Imanishi, T., Machida, H. 2001. Development of Powertoros Unit Half Toroidal CVT Comparison between Half Toroidal and Full Toroidal CVTs (2),” Motion and Control NSK, vol. 10, p. 1-8.
  • 10. Yildiz, A., Kopmaz, O., Telli, C. S. 2015. “Dynamic Modeling and Analysis of a Four-Bar Mechanism Coupled with a CVT for Obtaining Variable Input Speeds,” Journal of Mechanical Science and Technology, vol. 29 (3), p. 1001-1006.
  • 11. Zhang, Y., Zhang, X., Tobler, W. 2000. “A Systematic Model for the Analysis of Contact, Side Slip and Traction of Toroidal Drives,” Journal of Mechanical Design, Transactions of ASME, vol. 122, p. 523-528.
  • 12. Novellis, D. L., Carbone, G., Mangialardi, L. 2012. “Traction and Efficiency Performance of the Double Roller Full-Toroidal Variator: A Comparison with Half- and Full-Toroidal Drives,” Journal of Mechanical Design, vol. 134 (071005), p. 1-14.
  • 13. Carbone, G., Mangialardi, L., Bonsen, B., Tursi, C., Veenhuizen, P. A. 2007. “CVT Dynamics: Theory and Experiments Mechanism and Machine Theory,” vol. 42, p. 409-428.
  • 14. Srivastava, N., Haque, I. 2009. A Review on Belt and Chain Continuously Variable Transmissions (CVT): Dynamics and Control,” Mechanism and Machine Theory, vol. 44, p. 19-41.
  • 15. Srivastava, N., Haque, I. 2009. “Nonlinear Dynamics of a Friction-Limited Drive: Application to a Chain Continuously Variable Transmission (CVT) System,” Journal of Sound and Vibration, vol. 321, p. 319-341.
  • 16. Carbone, G., Novellis, L. D., Commissaris, G., Steinbuch, M. “An Enhanced CMM Model for the Accurate Prediction of Steady-State Performance of CVT Chain Drives,” Journal of Mechanical Design, vol. 132 (021005), p. 1-8.
  • 17. Zheng, C. H., Lim, W. S., Cha, S. W. 2011. Performance Optimization of CVT for Two-Wheeled Vehicles,” International Journal of Automotive Technology, vol. 12 (3), p. 461-468.
  • 18. Belfiore, N. P., Stefani, G. D. 2003. “Ball Toroidal CVT: A Feasibility Study Based on Topology, Kinematics, Statics and Lubrication,” International Journal of Vehicle Design, vol. 23 (3), p. 304–331.
  • 19. Kim, J., Park, F. C., Park, Y., Shizuo, M. 2002. “Design and Analysis of a Spherical Continuously Variable Transmission,” Journal of Mechanical Design, vol. 124 (1), p. 21–29.
  • 20. Iino, T., Okuda, A., Takano, M., Tanaka, M., Sakai, K., Asano, T., Fushimi, K. 2003. “Research of Hydrostatic CVT for Passenger Vehicles,” JSAE Review, vol. 24 (3), p. 227–230.
  • 21. Savaresi, S. M., Taroni, F. L., Previdi, F., Bittanti, S. 2004. “Control System Design on a Power-Split CVT for High-Power Agricultural Tractors,” Transactions on Mechatronics, vol. 9 (3), p. 569-579.
  • 22. Wikimedia Foundation Inc. Continuously Variable Transmission. http://en.wikipedia.org/wiki/Continuously_variable_transmission, son erişim tarihi: 20.03.2015.