UÇAK MOTORU UYGULAMALARINDA ALTERNATİF ÇÖZÜMLER: MoSi2 ESASLI MALZEMELERİN YAPISAL ELEMAN OLARAK KULLANIMI

MoSi2 esaslı malzemeler, yüksek sıcaklıklardaki oksijen zengini ortamlarda zorlayıcı koşullara karşı gösterdikleri mükemmel dayanımları ve süperalaşımlara oranla sahip oldukları düşük yoğunluk sebebiyle, özellikle havacılık uygulamalarındaki uçak motoru parçaları için yapısal eleman olarak kullanılmaya aday özelliktedir. Çalışmada, öncelikle geleneksel uçak motoru yapısal malzemeleri uygulamalarındaki başlıca kısıtların verilmesinin ardından, MoSi2’nin temel mekanik ve fiziksel özelliklerinin analizi gerçekleştirilmiş ve yapısal yüksek sıcaklık uygulamalarındaki en önemli unsurlar olarak kabul edilen oksidasyon ve ısıl şok özellikleri incelenmiştir. Malzemenin Si3N4 ile oluşturduğu çeşitli kompozit yapıların, kırılma tokluğu değerlerini ve servis koşullarındaki ortalama sıcaklıklarda (~500°C) oksidasyon dayanımını büyük oranda iyileştirdiği ortaya konmuştur. Elde edilen veriler değerlendirildiğinde, MoSi2 esaslı malzemelerin mekanik kabiliyetlerinin gelişen teknolojiye bağlı olarak uçaklardan istenen hız/performans/maliyet kriterlerini karşılayabileceği görülmektedir.

ALTERNATIVE SOLUTIONS IN AIRCRAFT ENGINE APPLICATIONS: USAGE OF MoSi2 BASED MATERIALS AS STRUCTURAL ELEMENTS

MoSi2 based composites are candidate materials which can be used as structural elements in oxygenrich atmospheres especially in aircraft applications for their excellent mechanical properties and low density against agressive conditions at high temperatures. In this study, after giving some limits of traditional structural aircraft engine materials, essential mechanical and physical properties of MoSi2 were analysed. Oxidation and thermal shock behaviors (which are considered to be the most important factors in structural high temperature applications) were also determined. It was showed that low fracture toughness and pest oxidation at average temperatures (~500°C) can be easily eliminated by additions of Si3N4 in different portions to the material. The obtained data proves that mechanical abilities of MoSi2 based materials can respond to speed/performance/cost requirements of aircraft technologies.

___

  • 1. Sadananda, K., Feng, C. R., Mitra, R., Devi, S. C. 1999. “Creep and Fatigue Properties of High Temperature Silicides and Their Composites,” Materials Science and Engineering, vol. A 261, p. 223-238.
  • 2. Yao, Z., Stiglich, J. J., Sudarshan, T. S. 1998. “Molybdenum Disilicide Materials and Their Properties,” Journal of Materials Engineering and Performance, vol. 8 (3), p. 291-304.
  • 3. Soetching, F. O. 1999. “A Design Perspective on Thermal Barrier Coatings,” Journal of Thermal Spray Technology, vol. 8 (4), p. 505-511.
  • 4. Koolloos, M. F. J. 2001. “Behaviour of Low Porosity Microcracked Thermal Barrier Coatings Under Thermal Loading,” Doctoral Dissertation, Technische Universiteit Eindhoven, Eindhoven.
  • 5. Vasudevan, A. K., Petrovic, J. J. 1992. “A Comparative Overview of Molybdenum Disilicide Composites,” Materials Science and Engineering, vol. A155, p. 1-17.
  • 6. Petrovic, J. J. 1997. “High Temperature Structural Silicides,” Ceramic Engineering and Science Proceedings, vol. 18, p. 3-17.
  • 7. Petrovic, J. J., Vasudevan, A. K. 1994. “Overview of High Temperature Structural Silicides,” Material Research Society Symposum Proceedings, vol. 322, p. 3-8.
  • 8. Petrovic, J. J. 1993. “MoSi2 Based High Temperature Structural Silicides,” MRS Bulletin, vol. 8, p. 35-40.
  • 9. tr.wikipedia.org/wiki/Gaz_türbinli_motorlar, son erişim tarihi: 24.08. 2016.
  • 10. Sadananda, K., Feng, C. R. 1993. “Creep of High Temperature Composites,” In Processing and Fabrication of Advanced Materials for High Temperature Applications II, Ed. Ravi, V. A., Srivatsan, T. S., TMS, USA.
  • 11. Kumar, K. S., Liu, C. T. 1993. “Ordered Intermetallic Alloys, Part II : Silicides, Trialuminides and Others,” The Journal of The Minerals, Metals & Materials Society, vol. 45 (6), p. 28-34.
  • 12. Sadananda, K., Feng, C. R. 1994. “A Review of Creep and Silicides and Composites,” Materials Research Society Symposium Proceedings, vol. 322, p. 157-173.
  • 13. Vahlas, C., Chevalier, P. Y., Blanquet, E. 1989. “A Thermodynamic Evaluation of Four Si-M (M=Mo,Ta,Ti,W) Binary Systems,” CALPHAD, vol. 13 (273).
  • 14. Khanra, G. P., et.al. 2012. “Development of MoSi2-SiC Component for Satellite Launch Vehicle,” ISRN Metallurgy, vol. 2012, p. 2.
  • 15. Shah, D. M. 1992. “MoSi2 and Other Silicides as High Temperature Structural Materials,”7th International Symposium on Superalloys, 24-28 September 1992, Champion, PA, U.S.A.
  • 16. Wang, G., Jiang, W., Bai, G., Wu, L. 2003. “Effect of Addition of Oxides on Low Temperature Oxidation of Molybdenum Disilicide,” Journal of American Ceramic Society, vol. 86 (4), p. 731-734.
  • 17. Meschter, P. J. 1992. “Low Temperature Oxidation of Molybdenum Disilicide,” Metallurg. Trans. A, vol. 23A, p. 1763-1772.
  • 18. Chou, T. C., Nieh, T. G. 1992. “New Observation of MoSi2 Pest at 500°C,” Scrip. Metallurg. Mater., vol. 26, p. 1637-1642.
  • 19. Chou, T. C., Nieh, T. G. 1993. “Pesting of the High Temperature Intermetallic MoSi2,” Journal of Materials, November, p.15-22.
  • 20. http://reliableturbineservices.com/case-studies/blade-carrierrestoration, son erişim tarihi: 02.09.2016.
  • 21. Evans, A. G. 1990. “Perspective on the Development of HighToughness Ceramics,” J. Am. Ceram. Soc., vol. 73, p. 187.
  • 22. Petrovic, J. J. 2000. “Toughening Strategies for MoSi2 – Based High Temperature Structural Silicides,” Intermetallics, vol. 8, p. 1175-1182.
  • 23. Green, D. J., Hannink R. H. J., Swain, M. V. 1989. Transformation Toughening of Ceramics, CRC Press Inc., Boca Raton, p. 57-93.
  • 24. Petrovic, J. J., Honnell, R. E., Mitchell, T. E., Wade, R. K., McClellan, K. J. 1991. “ZrO2-Reinforced MoSi2 Matrix Composites,” Ceram. Eng. Sci. Proc., vol. 12, p. 1633.
  • 25. Suzuki, Y., Sekino, T., Niihara, K. 1995. “Effects of ZrO2 Addition on Microstructure and Mechanical Properties of MoSi2,” Scripta. Metall. Mater., vol. 33, p. 69.
  • 26. Blendell, J. E., Coble, R. L. 1982. ”Measurement of Stress Due to Thermal Expansion Anisotropy in Al2O3,” Journal of the American Ceramic Society, vol. 65 (3), p. 174-178.
  • 27. Bartlett, A. H., Castro, R. G., Butt, D. P., Kung, H., Petrovic J. J., Zurecki, Z. 1996. “Plasma Sprayed MoSi2/Al2O3 Laminate Composite Tubes as Lances in Pyrometallurgical Operations,” Industrial Heating, January.
  • 28. Schafrik, R., Sprague, R. 2008. “Superalloy Technology – A Perspective on Critical Innovations for Turbine Engines,” Trans. Tech. Publications, vol. 380, p. 113-134.
  • 29. Uzunonat, Y. 2005, “Mühendislik Malzemesi Olarak MoSi2 Üzerine Bir Araştırma,” Yüksek Lisans Tezi, ESOGÜ, Eskişehir, s.1.
  • 30. Uzunonat, Y., Üzgür, S., Kuşhan, M. C. 2011. “New Strategies for the Improvement of Structural Gas Turbine Engine Parts,” 2nd International Conference on Mechanical Enginering, Robotics and Aerospace, Romanya.
  • 31. Kuşhan, M. C., Diltemiz, S. F., Uzunonat, Y. 2007. “The Applications of MoSi2 as High Temperature Materials in Gas Turbine Engines,” The 5th China International Conference of HighPerformance Ceramics, 10-13 May 2007, Changsa, China.
  • 32. Waghmare, U. V., Bulatov, V., Kaxiras, E., Duesbery, M. S. 1996. “Effects of Alloying on the Ductility of MoSi2 Single Crystals from First Principles Calculations,” Modelling and Simulation in Materials Science and Engineering, vol. 6 (4).
  • 33. Waghmare, U. V., Bulatov, V., Kaxiras, E., Duesbery, M. S. 1999. “Micro-Alloying for Ductility in Molybdenum Disilicide,” Mater. Sci. Eng, vol. A261, p. 147.
  • 34. Singhal, S. C. 1976. “Thermodynamic Analysis of the HighTemperature Stability of Silicon Nitride and Silicon Carbide,” Ceramurgia International, vol. 2 (3), p. 123-130.
  • 35. Natesan, K., Deevi, S. C. 2000. “Oxidation Behaviour of Molybdenum Disilicides and Their Composites,” Intermetallics, vol. 8, p. 1147-1158.
  • 36. Choi, S. R. 1998. “Elevated Temperature Slow Crack Growth and Room Temperature Properties of MoSi2 – 50 Vol. % Si3N4 Composites,” Ceramis Engineering and Science Proceedings, vol. 19 (3), p. 361-369.
  • 37. Nathal, M. V., Hebsur, M. G. 1997. “Strong, Tough and PestResistant MoSi2-Base Hybrid Composite for Structural Applications,” The 2nd International Symposium on Structural Intermetallics, 21-25 September 1997, Champion, PA, USA.
  • 38. Wade, R.K., Petrovic, J. J. 1992. “Fracture Modes in MoSi2,” J. Am. Ceram. Soc., vol. 75, p. 1682.
  • 39. Tanaka, I., Pezzotti, G., Okamoto, T., Miyamoto, Y. 1989. “Hot Isostatic Press Sintered and Properties of Silicon Nitride without Additives,” J. Am. Ceram. Soc., vol. 72, p. 1656.
  • 40. Hebsur, M. G., Choi, S. R., Whittenberger, J. D., Salem, J. A., Noebe, R. D. 2001. “Development of Tough, Strong and Pest-Resistant MoSi2-βSi3N4 Composites for High Temperature Structural Applications,” International Symposium on Structural Intermetallics, USA.
  • 41. Bose, S. 1992. “Makalenin adı,” In High Temperature Silicides, Ed. Vasudevan, A. K., Petrovic, J. J., North-Holland, New York, USA.
  • 42. Berczik, D. M. 1997. “Oxidation Resistant Molybdenum Alloy,” U.S. Patent, no. 5, 696, 150.