Tıpta biyoısı uygulaması

Kanser ölüme neden olan hastalıkların başında gelmektedir. Hastalığın tedavisi ile ilgili yapılan araştırmalarda, kanser türlerinin oldukça fazla olduğu görülmüştür. Bu durum tedavinin başarısını olumsuz etkilemektedir. Çünkü geliştirilen yöntemler hep belirli türler içindir. Kanser tedavilerinde cerrahi müdahalelerin tehlikeli veya imkansız olduğu durumlarda hipetermi olarak tanımlanan yöntemde, hastalıklı doku 42 Cye kadar ısıtılmaktadır. Dolayısıyla burada tümörlü dokular yok edilirken normal dokuların minimum zarar görmesi amaçlanmakladır. Bu bakımdan tedavi sırasında tümörlü ve sağlıklı dokulardaki sıcaklık dağılımlarının tam olarak bilinmesi uygulanacak tedavi yönteminin etkinliği açısından oldukça önemlidir. Ancak sıcaklıkların önceden tahmininde uygulanan elektromanyetik dalganın vücutta ısıl olarak endüklenmesinin ve vücuttaki taşınım ısı geçişini gerçekleştiren kan akışının doğru olarak tanımlanması oldukça önemlidir. Bugüne kadar yapılan çalışmalarda biyoısı transferi denkleminde yer alan bu iki terimle ilgili olarak yeterli doğrulukta genelleştirilmiş matematiksel tanımlamalar yapılamamıştır.

Cancer is the foremost disease that caused death. The researches conducted regarding the treatment of this disease have shown that there are many kind of cancer types. This situation affects negatively the treatment of cancer because the treatment method developed so far are for specific types. In cases where surgical intervention is dangerous or impossible, the malignant tissue is heated up to 42C in the treatment method called hypertermia. In this method, the unaffected tissues are aimed to have minimum damage while the effected ones are destroyed. Therefore, it is very important for the benefit of the method to know the temperature profiles in both tissues. The two most important terms making the pre-estimation of the temperature difficult and taking place In the bioheat heat transfer equation are correct definition of the thermal induction of the electromagnetic wave in the body and of the blood flow responsible forconvective heat transferin the body. In researches conducted so far; the generalized mathematical definitions of these two terms could not be made with adequate accuracy.

___

1. Hahn, G.M., Hyperthermia for the Engineer: A Short Biological Primer, IEEE Transactions on Biomedical Engineering, Vol. 31 , No. 1, 3-8, 1984.

2. Short, J. G. ve Turner, P. F., Physical Hyperthermia and Cancer Therapy, Proceedings of the IEEE, Vol. 68, No. 1, 133-142, 1990.

3. Taylor, L.S., Implantable Radiators for Cancer Therapy by Microwave Hypertharmia,Proceedings of the IEEE, Vol. 68, No. 1, 142-149, 1980.

4. Çıkrıkçı, S., Biyoısı Transferi Denklemi ve Hipertermi Tedavisinde Uygulamaları, İ.T.Ü. Fen Bilimleri Enst. Yüksek Lisans Tezi, Haziran 1995.

5. Vandenberg, P. M., DeHoop, A.T., Segal, A., ve N. Praagman, A, Computational Model of the Electromagnetic Heating of Biological Tissue with Application to Hyperthermic Cancer Therapy, IEEE Transactions on Biomedical Engineering, Vol. 30, No.12, 797-805, 1983.

6. Pennes, H. H., Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology , Vol. 1, 93-122, 1948.

7. Livesay, D. E., ve Chen, Kun-Mu, Electromagnetic Fields Induced Inside Arbitrarily Shaped Biological Bodies, IEEE Transactions on Microwave Theory and Techniques, Vol.22, No. 12, 1273-1280, 1974.

8. Ocheltree, K.B., ve Frizzell, L. A., Determination of Power Deposition Patterns for Localized Hyperthermia: A Steady-State Analysis, International Journal Hyperthermia,Vol.3, No.3, 269-279, 1987 .

9. Shitzer, A. ve Chato, J. C., Analytical Solutions to the Problem of Transient Heat Transfer in Living Tissue, Transactions of the ASME, Vol. 100, 202-21 0, 1978.

10. Michaelson, Sol M., Microwave Biological EHects, Proceedings of the IEEE, Vol. 68,No. 1, 40-49, 1980.

11. Spiegel, R.J., Review of Numerical Models for Predicting the Energy Deposition and Resultant Thermal Response of Humans Exposed to Electromagnetic Fields, IEEE Transactions of Micro - wave Theory and Techniques, Vol. 32, No. 8, 730-746, 1984.

12. Emery, A. F., Short, R. E., Guy, A. W., Kraning, K. K., The Numerical Simulation of the Human Body When Undergoing Exercise or Nonionizing Electromagnetic Irradiation, ASME Journal of Heat Transfer, Vol. 98, No. 5, 284-291, 1976.

13. Lokshina, A.M., Song, C.W., Rhee, J.G. ve Levitt, S.H., Effect of Fractionated Heating on the Blood Flow in Normal Tissues, International Journal of Hyperthermia, Vol. 1 , No. 2, 117-129, 1985.

14. Emery, A.F. ve Sekins, K. M., The Use of Heat Transfer Principles in Designing Optimal Diathermy and Cancer Treatment Modalities, International Journal of Heat and Mass Transfer, Vol. 25, No. 6, 823-834, 1992.

15. Knudsen, M., Estimation of Tissue Blood Flow from Hyperthermia Treatment Data, International Journal of Hyperthermia, Vol. 5, No. 5, 653-661, 1989.

16. Wissler, E. H., Comments on the New Bioheat Equation Proposed by Weinbaum and Jiji, ASME Journal of Biomechanical Engineering, Vol. 109, 227-233, 1987.

17. Fan, Liang-Tseng, Hsu, Fu-Tong, ve Hwang, Ching-Lai, A Review on Mathematical Models of the Human Thermal System, IEEE Transactions on Biomedical Engineering, Vol. 18, No. 3, 218-234, 1971.

18. Ketter, R. L., ve Prawel, S. P., Modern Methods of Engineering Computation, Mc. Graw Hiil Book Company, Newyork 1989.

19. Charny, C. K., ve Levin, R. L., Heat Transfer Normal to Paired ArterioIes and Venules Embedded in Perfused Tissue During Hypert - hermia, ASME Journal of Biomechanical Engineering, Vol. 11 0, 277-282, 1988.

20. Baish, J. W., Ayyaswamy, P. S. ve Foster, K. R., Small Scale Temperature Fluctuations in Perfused Tissue During Local Hyperther- mia, ASME Journal of Biomechanical Engineering, Vol. 106, 246-250, 1986.

21. Lagendijk, J.J.W., Hofman, P. ve Schipper, C., Perfusion Analysis in Advanced Brest Carcinoma During Hyperthermia, International Journal ot Hypertermia, Vol. 4, No. 5, 479-495, 1988.

22. Smith, G. D., Numerical Solution of Partial Differential Equations, Ox- ford University Press, London, 1965.

23. Chan, A., Sigelmann, K., Rubens A., Guy, A.W., ve Lehmann, J.F, Calculations by the Method of Finite Differences of the Temperature Distributions in Layered Tissues, IEEE Tran- sactions on Biomedical Engineering, Vol. 20, No. 2, 86-90, 1973.

24. Edelstein-Keshet, L., Dewhirst, M. W., Oleson, J. R. ve Samulski, T. V., Characterization of Tumor Temperature Distributions Based on Assumed Mathematical Forms, International Journal of Hyperthermia, Vol. 5, No. 6, 757-777, 1989.

25. Plancot, M., Prevost, B., Chive Fabre, J. J., Ledee, R., ve Glaux, G., A New Method for Thermal Dosimetry in Microwave Hyperthermia Using Microwave Radiometry for Temperature Control, International Journal of Hyperthermia, Vol. 3, No. 1, 9-19,1987.

26. Deng, Z.S. ve Liu, J., Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or Inside Biological Bodies, J. of Biomech. Eng., 124,638-649, 2002.

27. Liu, J. ve Xu, L.X., Boundary Information Based Diagnostic on the Thermal States of Biological Bodies, Int. J. Heat Mass Transf., 43, 2827-2839, 2000.

28. Hynynen., K., De Young D., Kundrat, M., ve E. Moros, The Effect of Blood Perfusion Rate on the Temperature Distributions Induced by Multiple, Scanned and Focused Ultrasonic Beams in Dogs' Kidneys in vivo, International Journal of Hyperthermia, Vol. 5, No. 4, 485-497, 1989.