Tabakalı kompozit malzemelerde yüksek hızlı darbe hasarı

Mühendislik malzemeleri, kullanım yerlerine bağlı olarak çeşitli yüklere ve çarpma etkilerine maruz kalabilirler. Darbe karşısında malzemede oluşan hasarın, darbenin özellikleri ve malzemenin yapısı ile sıkı bir bağlantısı vardır. Tabakalı yapıya sahip bir kompozit malzemede oluşan hasarın ve malzemenin darbeye karşı davranışının değerlendirilmesi oldukça güç ve uzmanlık isteyen bir konudur. Bu durumun en önemli sebebi, kompozit malzemelerin bilinen türdeki malzemelere göre daha kompleks bir yapıya sahip olmalarıdır. Bu yazıda tabakalı kompozit malzemede, yüksek hızlı darbe durumunda oluşan hasar ve türleri açıklanarak, yüksek hızlı darbeye maruz kalmış kompozit malzemedeki hasar değerlendirilecektir.

Engineering materials, can be exposed to different loads and impact effects depending on position of their usage. Damage occured by an impact, relates tightly to the construction of material and properties of impact event. Evaluation of the impact behaviour and damage characteristics of the composite plate are quite difficult and requires special knowledges of expertise. The main reason for this is that the composite materials have more complex structure than other engineering materials. In this articale, the high velocity impact damage of the layered composite materials are explained. These damage properties were also investigated on the impacted composite materials.

___

1. Critescu, N., Malvern, L., and Sierakowski, R., 1975, Failure mechanisms in composite plates impacted by bluntended penetrators, Foreign Object Impact Damage to Composites, American Society for Testing and Materials,159-172.

2. Sela, N. and Ishai, O., 1989, Interlaminar Fracture Toughness and Toughening of Taminated Composite Materials,: A review, Composites, 20(5):423-435.

3. Wang, Y., Li, J., and Zhao, D,, 1995, Mechanical. Properties of Fiber Glass and Kevlar Woven Fabric Reinforced Composites, Composites Engineering, 5(9):1159-1175

4. Martin, R., 1996, Interlaminar Fracture Characterization, Key Engineering Materials, 120-121:329-346.

5. Lin, H. and Lee, Y, 1990, Impact-induced fractue in Laminated Plates and Shells, Journal of Composite Materials, 24:1179-1199.

6. Lammerant L. and Verpoest, I., 1996, Modelling of the Interaction Between Matrix Cracks and Delaminations During Impact of Composite Plates, Composites Science and Technology, 56:1171-1178.

7. Choi, H., Downs, R, and Chang, E, 1991b, A new Approach Toward Understanding Damage Mechanisms and Mechanics of 1Aminate Composites Due to Low- Velocity Impact: part II - Analysis, Journal of Composite Materials, 25:1011-1038.

8. Joshi, S. and Sun, C., 1987, Impact-Induced Fracture in a Quasi-Isotropic Laminate, Journal of Composite Technology and Research, 9(2):40-46.

9. O'Brien, T. and Elber, W., 1993, Delamination and Fatigue of Composite Materials: a Review, Proceedings of the 9th International Confennce on Composite Materials, 2.1-2.11.

10. Lu, X. and Liu D., 1991, Finite Element Analysis of Strain Energy Release Rate at Delamination Rate at Delamination front, Journal of Reinforced Plastics and Composites, 10(3):279-229.

11.Hung, K.S., Nilsson, L., and Zhong, Z.H, 1995, Numerical studies on the delamination mechanism in laminated composites under impact, Proceedings of ICCM-10, Canada, 623-630.

12.Briscoe, B. and Williams, D., 1993, Interlaminar Fracture Toughness of Aramid/epoxy Laminates, Composites Science and Technology, 46:277-286.

13.Frissen, R., Govaert, L., and Peijs, T., 1995, Modelling of the Ballistic Impact Bbehaviour of Polyethylene-Fibre Reinforced Composites, Proceedings of ICCM-10, Canada, 759-766.

14.Lee, B., Song, J., and Ward,J., 1994, Failure of Spectra Polyethylene Fiber-Reinforced Composites Under Ballistic Impact Loading, Journal of Composite Materials 28(13):1202-1226.

15.Langlie, S. and Cheng, W., 1989, Numerical Simulation of High Velocity Impact on Fibre-Reinforced Ccomposites, ASME Pressure Vessels and Piping Conference, USA, 51-64.

16. Zhu, G., Goldsmith, W., and Dharan, C., 1992a, Penetration of Laminated Kevlar by Projectiles - II, Analytical Model, International Journal of Solid and Structure, 29(4):421-436.

17. Zim, G., Goldsmith, W., and Dharan, C., 1992b, Penetration of Laminated Kevlar by Projectiles - I. Experimental Investigation, Intemational Journal of Solid and Structures, 29(4):399-420.

18. Lee, B., Song, J., and Ward, J., 1994, Failure of Spectra Polyethylene Fiber-Reinforced Composites Uunder Ballistic Impact Loading, Journal of Composite Materials, 28(13):1202-1226.

19. Zee, R. and Shieh, C., 1993, Energy Loss Partitioning During Ballistic Impact of Polymer Composites, Polymer Composites, 14(3):265-271.

20. Wu, E., Tsai, C.Z., and Chen, Y.C., 1994, Penetration Into Glass/epoxy Composite Laminates, Journal of Composite Materials, 28(18):1783-1802.

21. Wu, E. and Chang, L.C., 1995, Woven Glass/Epoxy Laminates Subject to Projectile Impact, International Journal of Impat Engineering, 16(4):607-619.

22. Goldsmith, W., Dharan, C., and Chang, H., 1995, Quasi-. Static and Ballistic Perforation of Carbon Fiber Laminates, International Journal of Solids and Stuctures, 32(1):89-103.

23. Peijs, T., Smetts, E., and Govaert, L., 1994, Strain Rate and Temperature Effects on Energy Absorption of Polyethylene and Carbon Fibres, Advanced Composite Materials, 1 (1): 3 5-54.

24. Langlie, S. and Cheng, W., 1989, Numerical Simulation of High Velocity Impact on Fibre-Reinforced Composites, ASME Pressure Vessels and Piping Conference, Honolulu, HI, USA, 51-64.

25. Lin, L. and Bhatnagar, A., 1992, Ballistic energy absorption of composites -III, 24th Intemational SAMPE Technical Conference, T291-T306.

26. Segal, C., 1991, High-Performance Organic Fibers, Fabric, and Composites for Soft and Hard Armor Applications, 23rd International SAMPE Technical Conference, 651 -660.

27. Vinson, J. and Walker, J., 1995, Ballistic Impact Into Composite Material Structures, Proceedings of the 96th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, New Orleans, LA, 1924-1931