NANOAKIŞKAN İÇEREN TEK FAZLI MİNİ DOĞAL TAŞINIM DÖNGÜLERİNİN SAYISAL OLARAK İNCELENMESİ*

Bu çalışma kapsamında, Tek Fazlı mini Doğal Taşınım Döngülerinin (TFmDTD) farklı çalışma koşulları altındaki başarımı bilgisayar benzetimleri kullanılarak incelenmiştir. TFmDTD’nin eğim açısının (0, 30, 60, 75°), kullanılan nanoakışkanın tanecik oranının (saf su, %1, %2, %3 Al2O3 katkısı) ve ısıtıcı gücünün (10, 20, 30, 40, 50 W) başarıma etkisi incelenmiştir. Yapılan önceki deneysel çalışmadan elde edilen sonuçlarla, bu çalışmadan elde edilen sonuçlar karşılaştırılarak, bilgisayar benzetimlerinin farklı fiziksel koşullarda TFmDTD’lerin çalışma koşullarını modellemekteki başarısı tartışılmıştır. Karşılaştırmada, farklı başarım ölçütleri (döngüdeki en yüksek sıcaklık, ısıtıcının iki ucu arasındaki sıcaklık farkı ve etkinlik) kullanılarak sayısal çalışmanın güçlü ve zayıf yönleri ortaya konmuştur.
Anahtar Kelimeler:

Nanoakışkan, tek fazlı akış

NUMERICAL INVESTIGATION OF SINGLE PHASE NATURAL CIRCULATION MINI LOOPS

In this study, performance of Single Phase Natural Circulation mini Loops (SPNCmL) under different operating conditions is investigated by computer simulations. Effect of inclination angle (0, 30, 60, 75°), nanofluids’ filler content (distilled water, 1%, 2%, 3% Al2O3), and heater power (10, 20, 30, 40, 50 W) on the SPNCmL performance was investigated. The success of the numerical study were discussed by comparing the results with the previous experimental data. Maximum temperature, temperature difference between the two sides of the heater, and effectiveness were used for comparison to understand the pros and cons of these criteria for new designs.

___

  • 1. Basu, D. N., Bhattacharyya, S., Das, P. K. 2013. “Development of a Unified Model for the Steady-State Operation of Single-Phase Natural Circulation Loops,” International Journal of Heat and Mass Transfer, vol. 62, p. 452–462.
  • 2. Misale, M., Garibaldi, P., Passos, J. C., Bitencourt, G. G. 2007. “Experiments in a Single-Phase Natural Circulation Mini-Loop,” Experimental Thermal and Fluid Sciences, vol. 31, p. 1111–1120.
  • 3. Wang, J. Y., Chuang, T. J., Ferng, Y. M. 2013. “CFD Investigating Flow and Heat Transfer Characteristics in a Natural Circulation Loop,” Annals of Nuclear Energy, vol. 58, p. 65–71.
  • 4. Choi, S. U. S. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” In Developments and Applications of Non-Newtonian Flows, Ed. Siginer, D. A., Wang, H. P., ASME, FED, vol. 231, p. 99–105.
  • 5. Buschmann, M. H. 2013. “Nanofluids in Thermosyphons and Heat Pipes: Overview of Recent Experiments and Modelling Approaches,” International Journal of Thermal Sciences, vol. 72, p. 1–17.
  • 6. Misale, M., Devia, F., Garibaldi, P. 2012. “Experiments with Al2O3 Nanofluid in a Single Phase Natural Circulation Mini-Loop: Preliminary results,” Applied Thermal Engineering, vol. 40, p. 64-70.
  • 7. Turgut, A., Doganay, S. 2014. “Thermal Performance of a Single Phase Natural Circulation Mini Loop Working with Nanofluid,” High Temperatures-High Pressures, vol. 43 (4), p. 311-320.
  • 8. Doğanay, S., Turgut, A. 2015. “Enhanced Effectiveness of Nanofluid Based Natural Circulation Mini Loop,” Applied Thermal Engineering, vol. 75, p. 669–676.
  • 9. Ehsan, B. H., Saleemi, M., Nikkam, N., Khodabandeh, R., Toprak, M. S., Muhammed, M., Palm, B. 2014. “Accurate Basis of Comparison for Convective Heat Transfer in Nanofluids,” International Communications on Heat and Mass Transfer, vol. 52, p. 1-7.
  • 10. Basu, D. N., S. Bhattacharyya, Das. P. K. 2012. “Performance Comparison of Rectangular and Toroidal Natural Circulation Loops Under Steady and Transient Conditions,” International Journal of Thermal Sciences, vol. 57, p. 142-151.
  • 11. Basu, D. N., S. Bhattacharyya, P. K. Das. 2013. “Influence of Geometry and Operating Parameters on the Stability Response of Single-Phase Natural Circulation Loop,” International Journal of Heat and Mass Transfer, vol. 58, p. 322-334.
  • 12. Devia, F., Misale, M. 2012. “Analysis of the Effects of Heat Sink Temperature on Single-Phase Natural Circulations Behaviour,” International Journal of Thermal Sciences, vol. 59, p. 195-202.
  • 13. Pilkhwal, D. S., Ambrosini, W., Forgione, N., Vijayan, P. K., Saha, D., Ferreri, J. C. 2007. “Analysis of the Unstable Behaviour of a Single-Phase Natural Circulation Loop with One-Dimensional and Computational Fluid-Dynamic Models,” Annals of Nuclear Energy, vol. 34, p. 339-355.
  • 14. Karadeniz, Z. H., Doğanay, S., Turgut, A. 2014. “Numerical Study on Nanofluid Based Single Phase Natural Circulation Mini Loops,” Convective Heat and Mass Transfer, CONV-14, 8-13 June 2014, İzmir.
  • 15. Zhou, S. Q., Ni, R. 2008. “Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid,” Applied Physics Letters, vol. 92.
  • 16. Yu, W., France, D. M., Choi, S. U. S., Routbort, J. L. 2007. “Review and Assessment of Nanofluid Technology for Transportation and Other Applications,” Heat Transfer Engineering, vol. 29, p. 432-460.
  • 17. Bourantas, G. C., Skouras, E. D., Loukopoulos, V. C., Burganos, V. N. 2014. “Heat Transfer and Natural Convection of Nanofluids in Porous Media,” European Journal of Mechanics B/Fluids, vol. 43, p. 45–56.
  • 18. Elçioğlu, E. B. 2013. “Experimental and Theoretical Investigations on Alumina-Water Nanofluid Viscosity with Statistical Analysis,” Yüksek Lisans Tezi, ODTÜ Fen Bilimleri Enstitüsü, Ankara.