KESİNTİ TAŞINIMININ HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YAKLAŞIMIYLA KESTİRİMİ*

Sondaj sırasında kesintilerin yüzeye etkin bir şekilde taşınmalarının önemi reddedilmeyecek bir gerçektir. Bu çalışma, Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemini kullanarak çamur yoğunluğu, görünür çamur viskozitesi, çamur hızı ve kesinti boyutu gibi parametrelerin kesinti taşınımı üzerine etkilerini incelemektedir. HAD yöntemi sonuçları, rapor edilmiş bir deneysel çalışma sonuçlarıyla test edilmiştir. Tanımlı bir örnek durum problem için analitik model (Moore Korelasyonu) ve HAD analizi uygulanmıştır. Elde edilen sonuçlar karşılaştırılarak daha iyi bir HAD analizi değerlendirmesi, hata analizi ile birlikte gerçekleştirilmiştir. Simülasyon ve analitik hesaplamalardan elde edilenler, sonuçların çok iyi bir uyum gösterdiği ve %10’dan daha düşük bir göreli hata verdiği belirlenmiştir.

MODELLING CUTTING TRANSPORT USING COMPUTATIONAL FLUID DYNAMICS

The importance of efficient cutting transport during drilling operation is an undeniable fact. This study is an attempt to investigate the effects of mud weight, mud apparent viscosity, average annular velocity, and cutting size on cutting transport using Computational Fluid Dynamics (CFD) method. Results of CFD method was verified with an experimentally reported study. Both analytical method (Moore Correlation) and CFD analysis method were applied to a well-defined study case. Obtained results were compared to have better evaluation of CFD application along with error analysis. Simulating effects of average annular velocity, apparent viscosity, mud density, and cutting size on transport ratio using CFD were in a good agreement with analytical calculations with a relative error less than 10%.

___

  • 1. Hussaini, S. M., Jamal, A. Z. 1983. “Experimental Study of Drilled Cuttings Transport Using Common Drilling Muds,” SPE 10674, Society of Petroleum Engineers Journal, p. 11-20, DOI: 10.2118/10674-PA.
  • 2. Bilgesu, H. I., Ali, M. W., Aminian, K., Amiri, S. 2002. “Computational Fluid Dynamics (CFD) as a Tool to Study Cutting Transport in Wellbore,” SPE Paper 78716. SPE Eastern Regional Meeting, 23-26 October 2002, Lexington, Kentucky, DOI: 10.2118/78716-MS.
  • 3. Tomren, P. H., Iyoho, A. W., Azar, J. J. 1986. “Experimental Study of Cuttings Transport in Directional Wells,” SPE 12123, SPE Drilling Engineering, DOI: 10.2118/12123-PA.
  • 4. Ford, J. T., Peden, J. M., Oyeneyin, M. B., Gao, E., Zarrough, R. 1990. “Experimental Investigation of Drilled Cuttings Transport in Inclined Boreholes,” SPE 20421, SPE Annual Technical Conference and Exhibition, 23-26 September 1990, New Orleans, Louisiana, DOI: 10.2118/20421-MS.
  • 5. Hareland, G., Azar, J. J., Rampersad, P. R. 1993. “Comparision of Cuttings Transport in Directional Drilling Using Low-Toxicity Invert Emulsion Mineral-Oil-Based and Water-Based Muds,” SPE 25871, Low Permeability Reservoirs Symposium, 26-28 April 1993, Denver, Colorado, DOI: 10.2118/25871-MS.
  • 6. Okrajni, S. S., Azar, J. J. 1986. “The Effect of Mud Rheology on Annular Hole Cleaning in Directional Wells,” SPE 14178, SPE Drilling Engineering, DOI: 10.2118/14178-PA.
  • 7. Sifferman, T. R., Becker, T. E. 1992. “Hole Cleaning in Full-Scale İnclined Wellbores,” SPE 20422, SPE Drilling Engineering, DOI: 10.2118/20422-PA.
  • 8. Zeidler, H. U. 1972. “An Experimental Analysis of the Transport of Drilled Particles,” SPE 3064, Society of Petroleum Engineers Journal, p. 39-48, DOI: 10.2118/3064-PA.
  • 9. Duan, M., Miska, S., Yu, M., Takach, N., Ahmed, R. 2007. “Critical Conditions for Effective Sand-Sized Solids Transport in Horizontal and High-Angle Wells,” SPE-106707, Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City, Oklahoma, DOI: 10.2118/106707-MS.
  • 10. American Petroleum Institute, 2006. Rheology and Hydraulics of Oil-Well Drilling Fluids, API Recommended Practice 13D, 5th edition, USA.
  • 11. Bourgoyne, T. Jr., Millheim, K. K., Chenevert, M. E., Young Jr., F. S. 1991. “Applied Drilling Engineering,” Richardson, Texas: SPE Textbook Series, Society of Petroleum Engineers, vol. 2.
  • 12. ANSYS, Inc. 2011. “ANSYS FLUENT Theory Guide,” Release 14.0, ANSYS Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.