İmplant-Çimento Arayüzeyinin Kesme Dayanımını Etkileyen Faktörlerin İncelenmesi

Çimentolu kalça implantı bağlantılarında görülen en önemli hasarlardan biri aseptik gevşemedir. Aseptik gevşemede kemik-çimento ve çimento-implant arayüzeylerinde ayrılmalar meydana gelebilmektedir. Arayüzeylerde ne kadar dayanıklı bağlantılar elde edilebilirse o kadar uzun ömürlü cerrahi operasyonlar gerçekleştirilmiş olur. Çimento-implant arayüzeylerinde baskın olan gerilme, kesme gerilmesidir. Bu çalışmada pin-halka test yönteminden faydalanılarak çimento-implant arayüzeyinin kesme dayanımı araştırılmıştır. Ayrıca implant malzemesinin, yüzey pürüzlülüğünün ve çimento manto kalınlığının değişmesi ile arayüzey kesme dayanımında meydana gelen değişmeler incelenmiştir. İmplant malzemesi olarak implant üretiminde yaygın bir şekilde kullanılan titanyum alaşımı ve paslanmaz çelik malzemeler kullanılmıştır. Yüzey pürüzlülüğü değerleri farklı boyutlarda alüminyumoksit taneleri ile kumlama sonucunda elde edilmiştir. Delrinden imal edilen farklı iç çap ölçülerine sahip burçlar ile farklı manto kalınlıkları elde edilmiştir. Elde edilen bulgular, yüzey pürüzlülüğünün artması ile arayüzey kesme dayanımının arttığını, titanyum alaşımı malzemenin daha yüksek arayüzey bağlantısı sağladığını ve ideal manto kalınlığının 2-3 mm arasında olduğunu göstermektedir.

Investigation of Factors Affecting Shear Strength of Implant-Cement Interface

One of the most important failure in cemented hip replacement is aseptic loosening. Separation may occur at the bone-cement and cement-implant interfaces because of aseptic loosening. The more durable connections can be obtained at the interfaces; the longer surgical operations are performed. The predominant stress at cement-implant interfaces is shear stress. In this study, the shear strength of the cement-implant interface was investigated by using the pin-collar test method. In addition, changes in interfacial shear strength with changes in implant material, surface roughness and cement mantle thickness were investigated. Titanium alloy and stainless-steel materials widely used in implant manufacturing, were used as implant materials. Surface roughness values were obtained by sandblasting with different sized aluminium oxide grains. Different mantle thicknesses have been achieved with the bushes with variable inner diameter sizes made of Delrin. The results show that with the increase in surface roughness, the interface shear strength increases, the titanium alloy material provides higher interface connection, and the ideal mantle thickness is between 2-3 mm.

___

  • 1. Bousnane, T., Benbarek, S., Sahli, A., Serier, B., & Bouiadjra, B. A. B. 2018. “Damage of the bone-cement interface in finite element analyses of cemented orthopaedic implants”, Periodica Polytechnica Mechanical Engineering, 62 (2), 173-178.
  • 2. Koçak, S., Şekercioğlu, T. 2019 “Experimental and numerical static failure analyses of total hip replacement interfaces”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233 (11), 1183-1195.
  • 3. Ramaniraka, N.A., Rakotomanana, L.R., Leyvraz, P.F. 2000. “The fixation of the cemented femoral component: effects of stem stiffness, cement thickness and roughness of the cement-bone surface”, The Journal of Bone and Joint Surgery, 82-B (2), 297-303.
  • 4. Mann, K.A., Mocarski, R., Damron, L.A., Allen, M.J., Ayers, D.C. 2001. “Mixed-mode failure response of the cement-bone interface”, Journal of Orthopaedic Research, 19 (6), 1153-1161.
  • 5. Kim, D.G., Miller, M.A., Mann, K.A. 2004. “A fatigue damage model for the cement-bone interface”, Journal of Biomechanics, 37 (10), 1505-1512.
  • 6. Kim, D.G., Miller, M.A., Mann, K.A. 2004. “Creep dominates tensile fatigue damage of the cement-bone interface”, Journal of Orthopaedic Research, 22 (3), 633-640.
  • 7. Mann, K.A., Miller, M.A., Cleary, R.J., Janssen, D., Verdonschot, N. 2018. “Experimental micromechanics of the cement-bone interface", Journal of Orthopaedic Research, 26 (6), 872-879.
  • 8. Mann, K.A., Miller, M.A., Ayer, D.C., Verdonschot, N. 2009. “Shear fatigue micromechanics of the cement-bone interface: an in vitro study using digital image correlation techniques”, Journal of orthopaedic research, 27 (3), 340-346.
  • 9. Wang, J.Y., Tozzi, G., Chen, J., Contal, F., Lupton, C., Tong, J. 2010. “Bone-cement interfacial behaviour under mixed mode loading conditions”, Journal of the Mechanical Behavior of Biomedical Materials, 3 (5), 392-398.
  • 10. Paczocha, P., Indacochea, J.E. 2004. “Effect of Preheating on Implant-Cement Interface Strength for Hip Replacement”, Advances in Technology of Materials and Materials Processing, 6 (2), 142-151.
  • 11. Messick, K.J., Miller, M.A., Damron, L.A., Race, A., Clarke, M.T., Mann, K.A. 2007. “Vacuum-mixing cement does not decrease overall porosity in cemented femoral stems: an in vitro laboratory investigation”, The Journal of Bone and Joint Surgery. British volume, 89 (8), 1115-1121.
  • 12. Ramos, A., Simões, J.A. 2009. “The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses”, Journal of Biomechanics, 42 (15), 2602-2610.
  • 13. Zelle, J., Janssen, D., Peeters, S., Brouwer, C., Verdonschot, N. 2011. “Mixed-mode failure strength of implant-cement interface specimens with varying surface roughness”, Journal of Biomechanics, 44 (4), 780-783.
  • 14. Cools, P., Geyter, N., Vanderleyden, E., Barberis, F., Dubruel, P., Morent, R. 2016. “Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization”, Surface and Coatings Technology, 294, 201-209.
  • 15. Yang, D.T., Zhang, D., Arola, D.D. 2010. “Fatigue of the bone/cement interface and loosening of total joint replacements”, International Journal of Fatigue, 32 (10), 1639-1649.
  • 16. Miller, M.A., Eberhardt, A.W., Cleary, R.J., Verdonschot, N., Mann, K.A. 2010. “Micromechanics of postmortem-retrieved cement-bone interfaces”, Journal of Orthopaedic Research, 28 (2), 170-177.
  • 17. Miller, M.A., Race, A., Waanders, D., Cleary, R., Janssen, D., Verdonschot, N., Mann, K.A. 2011. “Multi-axial loading micromechanics of the cement-bone interface in postmortem retrievals and lab-prepared specimens”, Journal of the Mechanical Behavior of Biomedical Materials, 4 (3), 366-374.
  • 18. Kaner, S., Şekercioğlu, T. 2017. “Effect of Surface Pre-treatments and Ageing on the Adhesive Strength of Polymer Joints”, Polymer (Korea), 41 (5), 827-834.
  • 19. Koçak, S. 2019. Protezlerde Kullanılan Kemik-Çimento Bağlantılarının Mekanik Özelliklerinin İncelenmesi, Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • 20. Koçak, S., Şekercioğlu, T. 2020. “Impact strength of cemented implant interfaces”, Materials Testing, 62 (3), 271-276.
  • 21. BS EN ISO 10123. 2019. Adhesives-Determination of shear strength of anaerobic adhesives using pin and collar specimens.