Francis Türbinlerinde Döner Girdap Halatının Titreşim Ölçümleriyle Belirlenmesi

Alçak ve orta düşülü Francis türbinlerininin kısmi yüklerdeki dinamik davranışları önde gelen sorunlarındandır. Optimal tasarım bölgesi dışındaki kısmî yüklerde çalışma sırasında emme borusundaki akış düzensizlikleri nedeniyle meydana gelen döner girdap halatı (vortex rope - draft tube swirl) olgusu, çark devir hızının 0.2 – 0.4 katı aralığında düşük frekanslı basınç dalgalanmalarına neden olur. Bu dalgalanmaların hidrolik, mekanik veya yapısal bir bileşenin doğal frekansı ile çakışması durumunda rezonans nedeniyle yüksek titreşimler oluşmaktadır. Bu çalışma kapsamında, Francis türbinlerinde kısmî yüklerde meydana gelen yüksek titreşimlerin, sürekli (online) titreşim izleme sisteminin analizi yoluyla döner girdap halatı olgusunun belirlenmesi incelenmektedir. Türbin kılavuz yatağına monteli eddy-current tip yer değişimi sensörlerinden elde edilen izafi şaft titreşimlerine ait trend, FFT ve orbit grafiklerinin analizi, belirli kısmî yüklerde devir hızının yaklaşık %27’si hızla dönen girdap halatını açıkça ortaya koymaktadır.

Determination of Draft Tube Swirl Type Cavitation due to Vibration Monitoring on Francis Turbines

The dynamic behavior at part load has been a major problem for low head and medium head Francis turbines. Vortex rope (draft tube swirl), caused due to the flow instabilities in the draft tube under off-design part load operating conditions, create low frequency pressure pulsations at a frequency of 0.2 to 0.4 times the rotational frequency of the runner. High amplitude vibrations due to resonance can occur in case these pulsations coincide with the natural frequency of a hydraulic, mechanical, or structural component. This study presents the results of the vibration analysis done using the online vibration monitoring & diagnosis system installed on Francis turbines in a hydroelectric power plant which involve high overall vibrations exceeding the alarm limits at partial loads. Orbit and FFT spectrum plots are obtained from relative shaft vibration measurements performed using eddy-current displacement sensors wired to a realtime multichannel vibration analyzer. Measurement results at the turbine guide bearing revealed the drft tube swirl that rotates at 27% of the rotational speed at certain partial loads.

___

  • 1. Brekke, H. 2010. A Review on Work on Oscillatory Problems in Francis Turbines, New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, Meng Joo Er (Ed.), InTech, DOI: 10.5772/10434.
  • 2. Favrel, A. 2016. “Dynamics of the Cavitation Precessing Vortex Rope for Francis Turbines at Part Load Operating Conditions,” Ph.D., EPFL, Lausanne.
  • 3. Escaler, X., Egusquiza, E., Farhat, M., Avellan, F., Coussirat, M. 2006. “Detection of Cavitation in Hydraulic Turbines,” Mechanical Systems and Signal Processing, vol. 20 (4), ISSN: 0888-3270, p. 983-1007.
  • 4. Gohil, P. P., Saini, R. P. 2016. “Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant,” International Journal of Applied Fluid Mechanics, vol. 9 (1), p. 357-365.
  • 5. ESHA. 2004. Guide on How to Develop a Small Hydropower Plant.
  • 6. Knapp, R. T., Daily, J. W., Hammit, F. G. 1970. Cavitation, McGraw-Hill, New York.
  • 7. Raja, A. K., Srivastava, A. P., Dwivedi, M. 2006. Power Plant Engineering, New Age International Publishers, New Delhi.
  • 8. Brennen, C. E. 1995. Cavitation and Bubble Dynamics, Oxford University Press.
  • 9. Brennen, C. E., 1995. Cavitation and Bubble Dynamics. Oxford University Press, New York. ISBN 0195094093, p. 218.
  • 10. Türkmenoğlu, V. 2013. “The Vortex Effect of Francis Turbine in Electric Power Generation,” Turkish J. Elect. Eng. Comput. Sci., vol. 21, p. 26-37.
  • 11. Susan-Resiga, R., Vu, T. C., Muntean, S., Ciocan, G. D., Nennemann, B. 2006. “Jet Control of the Draft Tube Vortex Rope in Francis Turbines at Partial Discharge,” Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan, 17 - 21 October 2006.
  • 12. Dönmez, A. H. 2012. “Francıs Türbini Yayıcısındaki Akışın Modellenmesi,” Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • 13. Nicolet, C., Zobeiri, A., Maruzewski, P., Avellan, F. 2010. “On the Upper Part Load Vortex Rope in Francis Turbine: Experimental Investigation,” IOP Conf. Ser.: Earth Environ. Sci. 12 012053, 20-24 September 2010, Timişoara, Romania.
  • 14. Wack, J., Riedelbauch, S. 2017. “Numerical Simulation of a Cavitating Draft Tube Vortex Rope in a Francis Turbine at Part Load Conditions for Different σ-Levels,” J. Phys.: Conf. Ser. 813 012019, 2–3 February 2017, Porto, Portugal.
  • 15. Orhon, B. E. 2011. “Bir Hidroelektrik Santralda Sürekli Titreşim İzleme Sistemi Uygulaması,” V. Bakım Teknolojileri Kongresi, 14-16 Ekim 2011, Kocaeli.
  • 16. Brüel & Kjær. Basic Vibration – Measurement & Assesment, p. 66.