ELEKTRO-HİDROLİK YÜK SİMÜLATÖRÜ TASARIMI VE KONTROLÜ

Endüstriyel, savunma ve havacılık uygulamalarında kullanılmak üzere geliştirilen hidrolik sürücü sistemlerinin, kararlılıkları, güvenilirlikleri ve başarımlarının gerçek sistemler üzerinde uygulanmadan önce test edilmesi ve kanıtlanması oldukça önemlidir. Çalışma koşullarını yansıtacak dinamik kuvvetlerin, geliştirilen hidrolik sürücü sistemine laboratuvar ortamında kontrollü bir şekilde uygulanabilmesi için yük simülatörleri kullanılmaktadır. Bu çalışmada, 14 kN kapasitesinde bir elektro-hidrolik yük simülatörü geliştirilmiş ve bu simülatör için bir kontrol sistemi tasarlanmıştır. Elektro-hidrolik yük simülatörünün matematiksel modeli, MATLAB®/Simulink® ortamında oluşturulmuş ve gerçek sistem üzerinden alınan deneysel sonuçlar ile doğrulanmıştır. Bu model doğrusallaştırılarak karma bir ileri ve geri besleme kuvvet kontrolcüsü ve test edilecek sistemin bozucu etkisini giderici bir ileri besleme hız kontrolcüsü tasarlanmıştır. Tasarlanan sistemin başarımı, değişik yükleme koşulları altında test edilmiş ve değerlendirilmiştir.

DESIGN AND CONTROL OF AN ELECTRO-HYDRAULIC LOAD SIMULATOR

It is highly important to test and prove the stability, safety, and performance of hydraulic drive systems developed for many industrial, defense, and aerospace applications before implementing them on actual plants. Load simulators are used to test those systems by emulating and applying the operational dynamic loads in controlled laboratory conditions. In this study, an electro-hydraulic load simulator is developed and its control system is designed. The mathematical model of the electro-hydraulic load simulator is obtained in MATLAB®/Simulink® and it is validated by the experimental data obtained from the real system. A combined feedforward-feedback force controller and a velocity feedforward controller are designed by using the linearized model of the system. The performance of the load simulator is tested and evaluated under various loading conditions.

___

  • 1. Karpenko, M., Sepehri, N. 2012. “Electrohydraulic Force Control Design of a Hardware-in-the-Loop Load Emulator Using a Nonlinear QFT Technique,” Control Engineering Practice, vol. 20, p. 598-609.
  • 2. Mare, J. C. 2006. “Dynamic Loading Systems for Ground Testing of High Speed Aerospace Actuators,” Aircraft Engineering and Aerospace Technology: An International Journal, vol. 78, no. 4, p. 275-282.
  • 3. Li, J., Shao, J., Han, G., Wang, Z., Wu, B. 2009. “Study of the Electro-Hydraulic Load Simulator Based on Flow-Press Servo Valve and Flow Servo Valve Parallel Control,” International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, p. 70-74.
  • 4. Plummer, A. R. 2007. “Robust Electrohydraulic Force Control,” Journal of Systems and Control Engineering, vol. 221, no. 1, p. 717-731.
  • 5. Sivaselvan, M. V., Reinhorn, A., M., Shao, X., Weinreber, S. 2008. “Dynamic Force Control with Hydraulic Actuators Using Added Compliance and Displacement Compensation,” Earthquake Engineering and Structural Dynamics, vol. 37, no. 15, p. 1785-1800.
  • 6. Robinson, D. W. 2000. “Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control,” PhD Thesis, Department of Mechanical Engineering, Massachussetts Institute of Technology, USA.
  • 8. Pratt, J., Krupp, B., Morse, C. 2002. “Series Elastic Actuators for High Fidelty Force Control,” Industrial Robot: An International Journal, vol. 29, no. 3, p. 234-241.
  • 9. Wang, X., Feng, D. 2009. “A Study on Dynamics of Electric Load Simulator Using Spring Beam and Feedforward Control Technique,” Chinese Control and Decision Conference, 17-19 June 2009, Guilin, p. 301-306.
  • 10. Jiao, Z., Gao, J., Hua, Q., Wang, S. 2004. “The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator,” Chinese Journal of Aeronautics, vol. 17, no. 1, p. 39-46.
  • 11. Ercan, Y. 1995. Akışkan Gücü Kontrolü Teorisi, Gazi Üniversitesi Yayınları, Ankara.
  • 12. Jelali, M., Kroll, A. 2003. Hydraulic Servo-systems: Modelling, Identification and Control, ISBN: 978-1-4471-1123-8, Springer-Verlag, London.
  • 13. Merritt, H. E. 1967. Hydraulic Control Systems, John Wiley & Sons, Inc., New York.
  • 14. Astrom, K. J., Murray, R. M. 2009. Feedback Systems An Introduction for Scientists and Engineers, ISBN: 978-0-691-13576-2, Princeton University Press, Princeton, NJ.