ELEKTRİK VE HİDROJEN ÜRETİMİ İÇİN ENTEGRE SİSTEMİNİN TERMODİNAMİK ANALİZİ

Bu çalışmanın ana amacı, elektrik ve hidrojen üretim-depolama uygulamaları için güneş havuzu, fotovoltaik güneş sistemi ve rüzgar türbini destekli çok fonksiyonlu sistemin termodinamik analizini sunmaktır. Entegre sistem bileşenleri için enerji ve ekserji verimliliği ile termodinamik kayıplar arasındaki ilişkiler incelenmiştir. Termodinamik analiz güneş havuzu, fotovoltaik ve rüzgar türbini sistemlerinin ekserji analizlerini içeren entegre sistemin bileşenlerini kapsamaktadır. Enerji analizine bağlı olarak yaklaşık enerji verimlilikleri sırasıyla, güneş havuzunda %56, rüzgar türbininde %59, fotovoltaik sistemde %31, organik Rankine çevriminde (ORC) %16, proton değişimli membran yakıt hücresinde (PEMFC) %29, tüm sistem için maksimum enerji verimi %62 ve ekserji analizine bağlı olarak ekserji verimlilikleri sırasıyla, güneş havuzunda %40, rüzgar türbininde %38, fotovoltaik sistemde %17, organik Rankine çevriminde %25, proton değişimli membran yakıt hücresinde (PEMFC) %27, tüm sistem için maksimum ekserji verimi %46 olarak hesaplanmıştır. Entegre sitemin ekserji tüketiminin ekserji verimliliğine oranının ortam sıcaklığına, güneş radyasyonu akısına ve rüzgar hızına son derece bağlı olduğu; fakat güneş havuzu tabakalarının ekserji farkından az etkilendiği bulunmuştur.

THERMODYNAMIC ANALYSIS OF INTEGRATED SYSTEM FOR ELECTRICITY AND HYDROGEN PRODUCTION

The purpose of this study is to present thermodynamic analysis results of the solar pond, photovoltaic and wind based multigeneration energy production system for electricity and hydrogen production. The relationships between thermodynamic losses and energy and exergy efficiencies are investigated. Thermodynamic analysis performed in this paper contains exergy analyses of solar pond, photovoltaic and wind turbine subsystems. Energy efficiencies of solar pond, wind turbine, photovoltaic subsystem, organic Rankine cycle, PEM fuel cell and wholes system are 56%, 59%, 31%, 16%, 29% and 62%, respectively. On the other hand exergy efficiencies of solar pond, wind turbine, photovoltaic subsystem, organic Rankine cycle, PEM fuel cell and wholes system are 40%, 38%, 17%, 25%, 27% and 46%, respectively. The ratio of exergy consumption to exergy efficiency of integrated system is highly dependent to environment temperature, solar radiation flux and wind speed, however the effect of exergy difference on solar pond is very low.

___

  • 1. De Oliveira, J. S. 2012. Exergy: Production, Cost and Renewability, Springer, London, 2012.
  • 2. Ozturk, M., Dincer, I. 2013. “Thermodynamic Assessment of an Integrated Solar Power Tower and Coal Gasification System for Multi-Generation Purposes,” Energy Conversion and Management, vol. 76, p. 1061-1072.
  • 3. Koroneos, C., Spachos, T., Moussiopoulos, N. 2013. “Exergy Analysis of Renewable Energy Sources,” Renewable Energy, vol. 28, p. 295-310.
  • 4. Dincer, I., Zamfirescu, C. 2012. “Renewable‐Energy‐ Based Multigeneration Systems,” International Journal of Energy Research, vol. 36 (15), p. 1403-1415.
  • 5. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Energy, Exergy and Sustainability Analyses of Hybrid Renewable Energy Based Hydrogen and Electricity Production and Storage Systems: Modeling and Case Study,” vol. Applied Thermal Engineering, vol. 61 (2), p. 784-798.
  • 6. Munoz, F., Almanza, R. 1992. “A Survey of Solar Pond Developments,” Energy, vol. 17 (10), p. 927-938.
  • 7. Karakilcik, M., Dincer I. 2008. “Exergetic Performance Analysis of a Solar Pond,” International Journal of Thermal Science, vol. 47, p. 93-102.
  • 8. Al-Sulaiman, F. A., Hamdullahpur, F., Dincer, I. 2011. “Performance Comparison of Three Trigeneration Systems Using Organic Rankine Cycles,” Energy, vol. 36, p. 5741-5754.
  • 9. Wang, J., Yan, Z., Wang, M., Li, M., Dai, Y. 2013. “MultiObjective Optimization of an Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery Using Evolutionary Algorithm,” Energy Conversion and Management, vol. 71, p. 146-158.
  • 10. Ozturk, M., Dincer, I. 2013. “Thermodynamic Analysis of a Solar-Based Multi-Generation System with Hydrogen Production,” Applied Thermal Engineering, vol. 51, p. 1235-1244.
  • 11. Barelli, L., Bidini, G., Gallorini, F., Ottaviano, A. 2011. “An Energetic–Exergetic Analysis of a Residential CHP System Based on PEM Fuel Cell,” Applied Energy, vol. 88, p. 4334-4342.
  • 12. Bozkurt, I., Karakilcik, M. 2015. “Exergy Analysis of a Solar Pond Integrated with Solar Collector,” Solar Energy, vol. 112, p. 282-289.
  • 13. Ozlu, S., Dincer, I. 2015. “Development and Analysis of a Solar and Wind Energy Based Multigeneration System,” Solar Energy, vol. 122, p. 1279–1295.
  • 14. Khalid, F., Dincer, I., Rosen, M. A. 2015. Energy and Exergy Analyses of a Solar-Biomass Integrated Cycle for Multigeneration,” Solar Energy, vol. 112, vol. 290–299.
  • 15. Bicer, Y., Dincer, I. 2015. Development of a New Solar and Geothermal Based Combined System for Hydrogen Production,” Solar Energy, vol. 127, p. 269–284.
  • 16. Freris, L. L. 1990. Wind Energy Conversion Systems, Prentice Hall, New York.
  • 17. Dinçer, İ., Rosen, M. A. 2013. Exergy: Energy, Environment and Sustainable Development, Elsevier, New York.
  • 18. Petela, R. 2003. “Exergy of Undiluted Thermal Radiations,” Solar Energy, vol. 74, p. 469-488.
  • 19. Akyüz, E., Coşkun, C., Oktay, Z., Dinçer, İ. 2012. “A Novel Approach for Estimation of Photovoltaic Exergy Efficiency,” Energy,vol. 44, p. 1059-1066.
  • 20. Zamfirescu, C., Dincer, I. 2009. “How Much Exergy One can Obtain from Incident Solar Radiation?,” Journal of Applied Physics, vol. 105, p. 44911.
  • 21. Patel, M. R. 1999. Wind and Solar Power Systems, CRC Press, New York.
  • 22. Nelson, C. A., Tew, M., Phetteplace, G. E. 2002. “Review of the Federal Interagency Process used to Select the Wind Chill Temperature (WCT) Index,” 18th International Conferance on Interactive Information, 13-17 January 2002, Orlando, p. 196–198.
  • 23. F-Chart Software. “Engineering Equation Solver,” http://www.fchart.com/ees/, son erişim tarihi: 15.09.2015.
  • 24. Ghosh, S., Dincer, I. 2014. “Development and Analysis of a New Integrated Solar-Wind-Geothermal Energy System,” Solar Energy, vol. 107, p. 728-745.