Leptinin Yara İyileşmesi Üzerine In Vitro Etkisinin Büyüme Faktörleri Üzerinden İncelenmesi

Yara iyileşmesi; epitelyal, endotelyal, mezenkimal ve inflamatuvar hücrelerin biraraya gelip, normal işlevlerini belirli bir sıra ve düzen içerisinde yerine getirmeleriyle karakterizedir. Leptin, ağırlıklı olarak yağ dokusundan salgılanan ve yara iyileşme süresini kısalttığı bilinen sitokin benzeri bir hormondur. Bu çalışmada; fibroblast hücrelerinde yara iyileşmesi modeli oluşturarak leptinin doz (100 ng/mL, 200 ng/mL, 400 ng/mL ve 800 ng/mL) ve süre (24 ve 48 saat) bağımlı etkilerinin in vitro yöntemlerle incelenmesi amaçlanmıştır. Yara modeli oluşturulan hücreler üzerine artan dozlarda leptin uygulaması yapıldıktan 24 ve 48 saat sonra yara alanlarının kapanma oranları hesaplandı. Hücre canlılığını belirlemek amacı ile WST-1 analizi yapıldı. Crystal Violet boyaması ile fibroblast hücreleri morfolojik olarak incelendi ve FGFR2, KGF (FGF7), TGF-α, TGF-β1 ve Ki67 ekspresyonlarını belirlemek için de immunositokimya (ICC) analizi yapılarak H-Skor değerleri hesaplandı. In vitro yara modeli analizinde fibroblast hücrelerinin en yüksek yüzde kapanma oranı ve WST-1 analizi ile en yüksek hücre canlılık yüzdesi 48 saat 800 ng/mL leptin uygulanan grupta tespit edildi. ICC sonucunda elde edilen H-Skor değerleri ise, değerlendirilen proteinlerin ekspresyonlarının fibroblast hücrelerinde leptin dozu ve süresine bağlı olarak arttığını gösterdi. Çalışma sonucunda fibroblast hücrelerinde leptinin in vitro yara iyileşmesini sağlayan en etkili dozunun 800 ng/mL olduğu belirlenmiştir. Ayrıca FGFR2, KGF (FGF7), TGF-α, TGF-β1 ve Ki67 ekspresyonlarının leptin dozuna ve uygulama süresine bağlı olarak hücrelerde arttığı ve en yüksek artışın en yüksek dozda ortaya çıktığı gösterilmiştir. Bu çalışmanın sonuçlarının, yapılacak olan in vivo yara iyileşmesi araştırmalarında leptin kullanımına öncülük edeceği düşünülmektedir.

Investigation of The In Vitro Effect of Leptin on Wound Healing Through Growth Factors

Wound healing is characterized by the epithelial, endothelial, mesenchymal and inflammatory cells come together and perform their normal functions in a certain order. Leptin is a cytokine-like hormone secreted predominantly from adipose tissue and known to shorten wound healing time. In this study, it is aimed to examine the dose (100 ng/mL, 200 ng/mL, 400 ng/mL and 800 ng/mL) and time (24 and 48h) dependent effects of leptin by in vitro methods by creating wound healing model in fibroblast cells. The closure rates of the wound areas were calculated 24 and 48h after the application of increasing doses of leptin. WST-1 analysis was performed to determine cell viability. Fibroblast cells were examined morphologically by Crystal Violet staining and immunocytochemistry (ICC) analysis was performed to determine FGFR2, KGF (FGF7), TGF-α, TGF-β1 and Ki67 expressions, and H-Score values were calculated. In the in vitro wound healing model analysis, the highest percent closure rate of fibroblast cells and the highest cell viability percentage with WST-1 analysis were detected in the group that treated with 800 ng/mL leptin for 48 hours. The H-Score values obtained as a result of ICC showed that the expression of the evaluated proteins increased in fibroblast cells dose and time depended manner. As a result of the study, it was determined that the most effective dose of leptin in fibroblast cells for wound healing was 800 ng/mL in vitro. In addition, it was shown that FGFR2, KGF (FGF7), TGF-α, TGF-β1 and Ki67 expressions increased in cells depending on the leptin dose and administration time, and the highest increase occurred at the highest dose. It is thought that the results of this study will lead to the use of leptin in in vivo wound healing model studies.

___

  • 1. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283-9.
  • 2. Monavarian M, Kader S, Moeinzadeh S, et al. Regenerative scar-free skin wound healing. Tissue Eng Part B Rev. 2019;25(4):294-311.
  • 3. Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: A cellular perspective. Physiol Rev. 2019;99(1):665-706.
  • 4. Yazar H, Karaca İ. Yumuşak dokuda yara iyileşmesi, etkileyen faktörler ve skar revizyonu. Atatürk Üniv Diş Hek Fak Derg. 2016;15:152-161.
  • 5. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2006;89:219-29.
  • 6. Smith PC, Martínez C, Cáceres M, et al. Research on growth factors in periodontology. Periodontology. 2015;67:234–50.
  • 7. Steefos HH. Growth factors and wound healing. Scand J Plast Reconstr Surg. 1994;28:95-105.
  • 8. Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004;1:283-9.
  • 9. Bonifant H, Holloway S. A review of the effects of ageing on skin integrity and wound healing. Br J Community Nurs. 2019;24(Sup3):S28-33.
  • 10. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35-43.
  • 11. Ethridge RT, Leong M, Philips LG. Sabiston Textbook of Surgery: 19 ed. Philadelphia: 2008. p. 191-216.
  • 12. Gilliver SC, Ashcroft GS. Sex steroids and cutaneous wound healing: the contrasting influences of estrogens and androgens. Climacteric. 2007;10:276-88.
  • 13. Hatch NE, Hudson M, Seto ML, et al. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292-305.
  • 14. Muhamed I, Sproul EP, Ligler FS, et al. Fibrin nanoparticles coupled with keratinocyte growth factor enhance the dermal wound-healing rate. ACS Appl Mater Interfaces. 2019;11(4):3771-80.
  • 15. Zhang L, Yuan Y, Yeh LK, et al. Excess transforming growth factor-α changed the cell properties of corneal epithelium and stroma. Invest Ophthalmol Vis Sci. 2020;61(8):20.
  • 16. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215-22.
  • 17. Graefe C, Eichhorn L, Wurst P, et al. Optimized Ki-67 staining in murine cells: a tool to determine cell proliferation. Mol Biol Rep. 2019;46(4):4631-43.
  • 18. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:05-713.
  • 19. Friedman JM. Role of leptin and its receptors in the control of body weight. In: (Blum WF, Kiess W & Rascher W eds.) Leptin-the voice of adipose tissue. Johann Ambrosius Barth Verlag, Germany;1997;3-22.
  • 20. Campfield LA, Smith FJ, Guisez Y, et al. Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546-9.
  • 21. Maffei M, Fei H, Lee GH, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA. 1995;92:6957-60.
  • 22. Sinha MK. Human leptin: the hormone of adipose tissue. Eur J Endocrinol. 1997;36:461-4.
  • 23. Muoio DM, Lynis Dohm G. Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab. 2002;16:653-66.
  • 24. Lord GM, Matarese G, Howard JK, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897-901.
  • 25. Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68(4):437-46.
  • 26. Aslan K. Serdar Z. Tokullugil H.A. Multifonksiyonel hormon: leptin. Uludağ Üniv Tıp Fak Derg. 2004;30:113-8.
  • 27. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370-8.
  • 28. Williams RC, Skelton AJ, Todryk SM, et al. Leptin and pro-inflammatory stimuli synergistically upregulate MMP-1 and MMP-3 secretion in human gingival fibroblasts. PLoS One. 2016;11(2):e0148024.
  • 29. Wei L, Chen Y, Zhang C, et al. Leptin induces IL-6 and IL-8 expression through leptin receptor Ob-Rb in human dental pulp fibroblasts. Acta Odontol Scand. 2019;77(3):205-12.
  • 30. Li P, Jin H, Liu D, et al. Study on the effect of leptin on fibroblast proliferation and collagen synthesis in vitro in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005;19(1):20-2.
  • 31. Murad A, Nath AK, Cha ST, et al. Leptin is an autocrine/paracrine regulator of wound healing. FASEB J. 2003;17(13):1895-7.
  • 32. Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol. 2015;25(4):221-33.
  • 33. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116-29.
  • 34. Matsumoto K, Arao T, Hamaguchi T, et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer. 2012;106(4):727-32.
  • 35. Davies H, Hunter C, Smith R, et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005;65(17):7591-5.
  • 36. Pollock PM, Gartside MG, Dejeza LC, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158-62.
  • 37. Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39(7):870-4.
  • 38. Gartside MG, Chen H, Ibrahimi OA, et al. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res. 2009;7(1):41-54.
  • 39. Carter JH, Cottrell CE, McNulty SN, et al. FGFR2 amplification in colorectal adenocarcinoma. Cold Spring Harb Mol Case Stud. 2017;3(6):a001495.
  • 40. Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010;125(1):105-17.
  • 41. Chen B, Kao HK, Dong Z, et al. Complementary effects of negative-pressure wound therapy and pulsed radiofrequency energy on cutaneous wound healing in diabetic mice. Plast Reconstr Surg. 2017;139(1):105-17.
  • 42. Beer HD, Gassmann MG, Munz B, et al. Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc. 2000;5(1):34-9.
  • 43. Wang LL, Zhao R, Liu CS, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46.
  • 44. Xian CJ. Roles of epidermal growth factor family in the regulation of postnatal somatic growth. Endocr Rev. 2007;28(3):284–96.
  • 45. Sun J, Cui H, Gao Y, et al. TGF-α overexpression in breast cancer bone metastasis and primary lesions and TGF-α enhancement of expression of procancer metastasis cytokines in bone marrow mesenchymal stem cells. Biomed Res Int. 2018;2018:6565393.
  • 46. Zhang L, Yuan Y, Yeh LK, et al. Excess transforming growth factor-α changed the cell properties of corneal epithelium and stroma. Invest Ophthalmol Vis Sci. 2020;61(8):20.
  • 47. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215-22.
  • 48. Peplow PV, Chatterjee MP. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine. 2013;62:1–21.
  • 49. Pereira Beserra F, Sérgio Gushiken LF, Vieira AJ, et al. From inflammation to cutaneous repair: Topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF-κB, Ki-67, growth factor expression, and distribution of collagen fibers. Int J Mol Sci. 2020;21(14):4952.
Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi-Cover
  • ISSN: 2148-8118
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: Muğla Sıtkı Koçman Üniversitesi