QUADROTORLAR İÇİN OPTİMUM KARAKTERİSTİK DENKLEMLİ İKİNCİ DERECEDEN KAYAN KİPLİ DENETLEYİCİ TASARIMI

Son zamanlarda, düşük boyutlarda kullanılan dört motorlu mikro insansız hava araçları (İHA) askeri ve sivil uygulamalarda karşımıza çıkmaktadır. Kullanım alanlarının giderek genişlemesi ile birlikte, yörünge takibinde daha hassas uçuşların gerçekleştirilmesi problemleri adına geliştirilen kontrol yapıları araştırmacılara yeni alanlar açmaktadır. Bu amaçlar doğrultusunda, ilk olarak bu çalışmada dört motorlu İHA’nın doğrusal olmayan matematiksel modeli NewtonEuler denklemleri ile elde edilmiştir. Yörünge takibinde İHA’ya ikinci dereceden kayan kipli denetleyici (SOSMC) uygulanmıştır. SOSMC yapısı içerisinde pozisyon ve davranış kontrolünün sağlanması için tek durum değişkenli ve çift durum değişkenli alt sistemlere ayrı ayrı uygulanmıştır. Bir sonraki adımda denetleyici katsayıları optimum karakteristik denklem kullanılarak bulunmuştur. Referans çalışmaya bağlı kalınarak denklemin sınır değerleri elde edilmiş ve en optimum değerler bu sınır değerler içerisinden elde edilmiştir. Son bölümde ise denetleyiciye ait benzetim sonuçları elde edilmiş ve referans çalışma ile karşılaştırılması yapılmıştır. Sonuç olarak, elde edilen şekillere göre Optimum karakteristik denklem sonuçları daha az kalıcı durum hatası üretmiş ve daha yüksek hassasiyetle yörüngeyi takip etmiştir. Bu sayede elde edilen son kontrol yapısı gürbüzlüğünü kanıtlamıştır. Bu çalışmada elde edilen benzetim sonuçları Simulink/MATLAB ortamında gerçekleştirilmiştir

SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS

Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian applications. As the usage of these vehicles becomes widespread, the development of controller structures which allow the UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study simulation results are obtained using Simulink/MATLAB environment.

___

  • [1] Frankelius, P., Norrman, C. and Johansen, K., “Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones”, J. Agric. Environ. Ethics, pp.681-707, 2017
  • [2] Kim, J., Gadsden, S. A., and Wilkerson, S. A., “A Comprehensive Survey of Control Strategies for Autonomous Quadrotors”, Canadian Journal of Electrical and Computer Engineering, 43(1), 3-16, 2019
  • [3] Kumar, S.G. and Shukla, D.P., “Application of drone for landside mapping, dimension estimation and its 3D reconstruction”, Journal of the Indian Society of Remote Sensing, pp.903-914, 2018
  • [4] Liang, X., Fang, Y., Sun, N. and Lin, H., “Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems”, IEEE Transactions on Industrial Electronics, Vol.65, No.4, pp. 3395-3405, 2018
  • [5] Laszlo, B., Agoston, R. and Xu, Q., “Conceptual Approach of Measuring the Professional and Economic Effectiveness of Drone Applications Supporting Forest fire Management”, Proc. Eng., 211 8–17, 2018
  • [6] Madjid, M.Y.A., Vandeginste, V., Hampson, G., Jordan, C.J. and Booth, A.D., “Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping”, Mar. Pet. Geol., 91 723–734, 2018
  • [7] Han, T., Chi, M., Guan, Z.-H., Hu, B. and Xiao, J.-W., Huang, Y., “Distributed Three-Dimensional Formation Containment Control of Multiple Unmanned Aerial Vehicle Systems”, Asian J. Control, 2017, Vol. 19, pp. 1103–1113
  • [8] Dierks, T., and Jagannathan, S., “Output feedback control of a quadrotor UAV using neural networks”, IEEE transactions on neural networks, 21(1), 50-66., 2009
  • [9] Mo, H. and Farid, G., “Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV – A Survey”, Asian Journal of Control, Vol.21, No.2 pp.989- 1008, 2019
  • [10] Hassanalian, M., and Abdelkefi, A., “Classifications, applications, and design challenges of drones: A review”, Progress in Aerospace Sciences (pp. 99-131), 2017
  • [11] Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., and Smailzadeh, S. M., “Attitude control of a quadrotor with optimized PID controller”, Intelligent Control and Automation, 4(03), 335, 2013
  • [12] Argentim, L. M., Rezende, W. C., Santos, P. E., and Aguiar, R. A., “PID, LQR and LQR-PID on a quadcopter platform”, International Conference on Informatics, Electronics and Vision (ICIEV), pp. 1-6, 2013
  • [13] Bouabdallah, S., Noth, A., and Siegwart, R.,“PID vs LQ control techniques applied to an indoor micro quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Cat. No. 04CH37566, Vol. 3, pp. 2451-2456, 2004
  • [14] Lippiello, V., Ruggiero, F., and Serra, D., “Emergency landing for a quadrotor in case of a propeller failure: A backstepping approach”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4782- 4788, 2014
  • [15] Liu, J.K. and Wang, X.H., “Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation”, Springer, Tsinghua University Press, Berlin Beijing, 2012
  • [16] Razmi, H. and Afshinfar, S., “Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV” in Aerospace science and technology, (pp. 12-27), 2019
  • [17] Tilki, U. and Erust, A.C., “Higher Order Sliding Mode Control of Four Rotor Unmanned Aerial Vehicle”, International Science, Mathematics and Engineering Sciences Congress, (pp. 189-202), İzmir, 2019
  • [18] Xu, R. and Ozguner, U., “Sliding mode control of a quadrotor helicopter”, Proceedings of the 45th IEEE Conference on Decision and Control, pp. 4957-4962, 2006
  • [19] Yang, Y. and Yan, Y., “Attitude regulation for unmanned quadrotors using adaptive fuzzy gainscheduling sliding mode control”, Aerospace Science and Technology, 54, 208-217, 2016
  • [20] Zhang, E. H., Xiong, J. J. and Luo, J. L., “Second order sliding mode control for a quadrotor UAV” ISA transactions, 53(4), 1350-1356, 2014
Mugla Journal of Science and Technology-Cover
  • ISSN: 2149-3596
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri Enstitüsü