KÜRESEL GRAFİTLİ DÖKME DEMİRLERDE FAZLARIN HACİM ORANI, NODÜLARİTE VE NODÜL SAYISININ IMAGEJ YAZILIM PROGRAMI KULLANILARAK DEĞERLENDİRİLMESİ

Bu çalışmada, küresel grafitli dökme demirlerin mikro yapılarını nicel olarak tanımlamak için ücretsiz dijital görüntü işleme yazılımının kullanıldığı basit bir yöntem açıklanmıştır. Yöntem üç farklı küresel grafitli dökme demir türüne uygulanarak, bunların içyapılarındaki ferrit, perlit ve grafit faz oranları, grafit nodülerliği, nodül sayısı, nodül büyüklüğünü değerlendirilmiştir. Örneklerin iyi derecede nodülerlik (alana göre ~ % 88) gösterdiği, farklı grafit ortalama büyüklüğüne ve çevre morfolojisine sahip oldukları bulunmuştur. Tüm örneklerde grafit miktarının da benzer olduğu (alana göre % 11 ± 2) bulunmuştur. Öte yandan, ASTM A536 sınıfları 60-40-18, 65-45-12 ve 80-55-06 için ferrit yüzdeleri sırasıyla % 85.8, 57.1 ve% 52.5 olarak hesaplanmıştır. Ayrıca, bu üç sınıf arasında, perlit içeriği arttıkça sertliğin arttığı gösterilmiştir. Sonuçların standartlar ile uyumlu olması, görüntü işleme yoluyla kantitatif metalografinin dökme demirlerin mekanik özelliklerini tahmin etmek için güçlü bir araç olduğunu göstermiştir.

ASSESSING THE VOLUME FRACTIONS OF THE PHASES, NODULARITY AND NODULE COUNT OF SPHEROIDAL GRAPHITE CAST IRON USING IMAGEJ SOFTWARE

In this study, a simple method for assessing the microstructure of ductile cast iron by using a freeware digital imageprocessing software is described. The method is applied to three different ductile iron grades to assess their ferrite, pearliteand graphite volume fractions as well as graphite nodularity, nodule count, nodule size. All specimens were found to showgood nodularity (~ 88 % by area) with different graphite average size and perimeter morphology. The amount of graphitewas also found to be similar (11±2 % by area) in all specimens. On the other hand, ferrite percentages were found as 85.8,57.1, and 52.5 % respectively for ASTM A536 grades 60-40-18, 65-45-12, and 80-55-06. It was also found that among thesethree grades, the higher the pearlite content, the higher the hardness. The agreement with the standards confirms thatquantitative metallography through image processing is a powerful tool in order to estimate the mechanical properties ofcast irons.

___

  • [1] Oluwole OO, Olorunniwo OE, Ogundare OO, Atanda PO and Oridota OO, “Effect of Magnesium and Calcium as Spheroidizers on the Graphite Morphology in Ductile Cast Iron“, Journal of Minerals & Materials Characterization & Engineering 6, 1, 25- 37, 2007.
  • [2] Omole SO, Oyetunji A, Alaneme KK, Olubambi PA, “Structural characterization and mechanical properties of pearlite – Enhanced micro-alloyed ductile irons“, Journal of King Saud University - Engineering Sciences, In Press, Corrected Proof, 2018.
  • [3] González-Martínez R, De La Torre U, Ebel A, Lacaze J, and Sertucha J, “Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part II–Mechanical properties“, Materials Science and Engineering: A, 712, 803-811, 2018.
  • [4] Yürektürk Y, and Baydogan M, “Estimating Volume Fractions of Microstructural Constituents in Austempered High Silicon Alloyed GJS 600-10 Ductile Iron through Magnetic Measurements (VSM)“, Materials Science Forum. 907, 50-55, 2017.
  • [5] Ductile Iron Quality Assurance Guide by Ductile Iron Society; https://www.ductile.org/
  • [6] Szczotok A, “Guidance and advice to image analysis applied in materials science“, Technical Transactions, Mechanics Issue 3-M, 10, 15-21, 2016.
  • [7] Imasogie BI, Wendt U., “Characterization of Graphite Particle Shape in Spheroidal Graphite Iron using a Computer-Based Image Analyser“, Journal of Minerals and Materials Characterization and Engineering 3, 1 1-12, 2004.
  • [8] Albuquerque V, Tavares JMRS, Cortez P., “Quantification of the Microstructures of Hypoeutectic White Cast Iron using Mathematical Morphology and an Artificial Neuronal Network“, International Journal of Microstructure and Materials Properties 5, 1, 52-64, 2010.
  • [9] Sarojadevi H, Shetty AB, Murthy AK, Shetty PB, Mukunda PG, “Digital Image Processing Technique for Microstructure Analysis of Spheroidal Graphite Iron“, International Journal of Combined Research & Development 1, 4, 2321-2241, 2013.
  • [10] Godbole S, Jayashree V, “Microstructure analysis of spheroidal graphite iron (SGI) using hybrid image processing approach“, International Journal of Advanced Research in Computer Engineering & Technology 3, 7, 2268-2273, 2014.
  • [11] Mirashi A, Jayashree V, “Microstructure analysis of cast iron using image processing“, International journal of innovations in egineering technology 6, 2 409- 417, 2015.
  • [12] Davut K, Çetin B, Arslan E, Meço H, Yazganarıkan C, “Nodularity and Nodule Count Analysis of Austempered Ductile Iron Castings by Digital Image Processing“, 18th International Metallurgy & Materials Congress 497-500, 2016.
  • [13] Olympus Industrial Resources, Application Notes, Cast Iron Analysis, https://www.olympusims. com/en/applications/cast-iron-analysis/, accessed: 05/07/2019.
  • [14] NIS Elements, Industrial, Metallography, Cast Iron Analysis Module, http://www.nis-elements.cz/en/ solutions/industrial/26, accessed: 05/07/2019.
  • [15] CLEMEX, Image Analysis Report 331, Porosity Analysis, http://www.clemex.com/clemex/media/ assets/pdf/Applications/Image-Analysis-Reports/ 331_CastIron_Porosity.pdf?ext=.pdf, accessed: 05/ 07/2019.
  • [16] Schneider CA, Rasband, WS, Eliceiri KW, “NIH Image to ImageJ: 25 years of image analysis“, Nature Methods 9, 7, 671-675, 2012.
  • [17] Rueden CT, Schindelin J, Hiner MC. et al., “ImageJ2: ImageJ for the next generation of scientific image data“, BMC Bioinformatics 18, 529, 2012.
  • [18] ASTM E2567-14, Standard Test Method for Determining Nodularity and Nodule Count in ductile Uron Using Image Analysis. ASTM International, West Conshohocken, PA, 2014, www.astm.org
  • [19] ASTM A247 – 17, Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. ASTM International, West Conshohocken, PA, 2014, www.astm.org
  • [20] Santis A. De, Bartolomeo O. Di, Iacoviello D., Iacoviello F., “Quantitative shape evaluation of graphite particles in ductile iron“, Journal of Materials Processing Technology 196, 292–302, 2008.
  • [21] Vasko A., “Evaluation of shape of graphite particles in cast irons by a shape factor“, Materials Today: Proceedings 3, 1199–1204, 2016.