INVESTIGATION OF THE EFFECT OF DIOCTYLFLUORENYL-co- BENZOTHIADIAZOLE BEARING POLYMER AND MWCNTS ON BIOSENSOR PERFORMANCE

The combination of conjugated polymers and carbon nanotubes serve great contributions in many research fields because of their superior characteristics. Herein, an electrochemical biosensor, using poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co- (1,4-benzo-{2,1’,3}-thiadiazole)] (PFBTz) and multi-walled carbon nanotubes (MWCNTs) was constructed for glucose sensing. To create such a surface, a graphite electrode was coated with PFBTz and MWCNTs, respectively. Then, glucose oxidase (GOx) was immobilized onto this new platform using glutaraldehyde (GA) as the cross linker. The limit of detection, linear range and sensitivity values were found to be 0.018 mM, 0.025–0.6 mM and 66.0 μAmM-1cm-2, respectively. The selectivity of the prepared biosensor was also examined in the presence of interferences and as a result, it has been observed that the biosensor response was much higher for glucose in all measurements. Surface characterizations before and after enzyme immobilization were done using scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. In the final part of the study, the constructed biosensor was applied to beverages for glucose detection and very promising results were obtained. With this work, a robust, novel and economic sensing platform was prepared for glucose determination.

DİOKTİLFLUORENİL-KO-BENZOTİYADİAZOL POLİMER VE ÇOK DUVARLI KARBON NANOTÜPÜN BİYOSENSÖR PERFORMANSI ÜZERİNE ETKİSİNİN İNCELENMESİ

Karbon nanotüp ve konjuge polimerlerin kombinasyonu çok iyi özelliklere sahip olmalarından dolayı birçok alanda güzel katkılar sağlamaktadır. Bu çalışmada, elektrokimyasal bir biyosensör 9,9-dioktilfluorenil-2,7-diyl) -alt-ko- (1,4-benzo- (2,1 ', 3} -tiyadiazol) (PFBTz) ve çok duvarlı karbon nanotüplerin (MWCNTs) kullanılması ile glikoz tayini için kullanılmıştır. Böyle bir yüzey oluşturmak için, grafit elektrot yüzeyi sırasıyla PFBTz ve MWCNTs ile modifiye edilmiştir. Daha sonra glikoz oksidaz (GOx) bu yeni platform üzerine çapraz bağlayıcı olan gluteraldehit (GA) yardımıyla immobilize edilmiştir. Tayin sınırı, lineer aralık ve hassasiyet değerleri sırasıyla 0.018 mM, 0.025–0.6 mM ve 66.0 μAmM-1cm-2 olarak bulunmuştur. Önerilen biyosensörün seçiciliği de, girişim yapan moleküllerin varlığında test edilmiştir ve biyosensör cevabının, tüm ölçümlerde glikoz için çok daha yüksek olduğu belirlenmiştir. Enzim immobilizasyonundan önce ve sonra yüzey karakterizasyonu, taramalı elektron mikroskobu (SEM) ve siklik voltametri (CV) teknikleri kullanılarak yapılmıştır. Çalışmanın son bölümünde ise, üretilen biyosensör kullanılarak içeceklerde glikoz tayini başarılı bir şekilde test edilmiştir. Bu çalışma ile glikozun tespiti için hızlı, yeni ve uygun maliyetli bir platform tasarlanmıştır.

___

[1]Harper, A. and Anderson, M.R. “Electrochemical glucose sensors—developments using electrostatic assembly and carbon nanotubes for biosensor construction”, Sensors, 10, 8248–8274, 2010.

[2]Wang, J. “Electrochemical Glucose Biosensors”, Chem. Rev., 108, 814-825, 2008.

[3]Singh, S., Chaubey, A., Malhotra, B.D. “Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films”, Anal. Chim. Acta, 502, 229-234, 2004.

[4]Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A. “Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes”, Food Chem., 135, 873- 879, 2012.

[5]Soylemez, S., Yilmaz, T., Buber, E., Udum, Y.A., Ozcubukcu, S., Toppare, L. “Polymerization and biosensor application of water soluble peptide-SNS type monomer conjugates”, J.Mat.Chem. B., 5, 7384-7392, 2017.

[6]Bicak, T.C., Gicevičius, M., Gokoglan, T.C., Yilmaz, G., Ramanavicius, A., Toppare, L., Yagci, Y. “Simultaneous and sequential synthesis of Polyaniline‑g‑poly(ethyleneglycol) by combination of oxidative polymerization and CuAAC click chemistry: A water-soluble”, Macromolecules, 50, 1824−1831, 2017.

[7]Malhotra, B. D. and Chaubey, A. “Biosensors for clinical diagnostics industry”, Sensor. Actuat. B-Chem., 91, 117- 127, 2003.

[8]Mazeiko, V., Kausaite-Minkstimiene, A., Ramanaviciene, A., Balevicius, Z., Ramanavicius, A. “Gold nanoparticle and conducting polymer-polyanilinebased nanocomposites for glucose biosensor design”, Sens. Actuat. B-Chem., 189, 187-193, 2013.

[9]Siriviriyanun, A., Imae, T., Nagatani, N. “Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, platinum nanoparticles, dendrimers, and enzymes”, Anal. Biochem., 443, 169–171, 2013.

[10]Yoo, E. and Lee, S. “Glucose biosensors: an overview of use in clinical practice”, Sensors, 10, 4558-4576, 2010.

[11]Bankar, S.B., Bule, M.V., Singhal, R.S., Ananthanarayan, L. “Glucose oxidase — An overview”, Biotechnol. Adv., 27, 489-501, 2009.

[12]Leskovac V., Trivić, S., Wohlfahrt, G., Kandrac, J., Pericin, D. “Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors”, Int. J. Biochem. Cell Biol., 37, 731-750, 2005.

[13]Brights, H.J. and Appleby, M. “The pH Dependence of the Individual Steps in the Glucose Oxidase Reaction”, J. Biol. Chem., 244, 3625-3634, 1969.

[14]Bard, A.J., and Faulkner, L.R. “Electrochemical methods: Fundamentals and applications”, New York: John Wiley, 2000.

[15]Liu, Y., Wang, M., Zhao, F., Xu, Z., Dong, S. “The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix”, Biosens. Bioelectron. 21, 984–988, 2005.

[16]Ayranci, R., Demirkol, D.O., Ak, M., Timur, S. “Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1Hpyrrol- 1-yl)aniline: A novel design in conducting polymer-based electrochemical biosensors”, Sensors, 15, 1389-1403, 2015.

[17]Deng, S., Jian, G., Lei, J., Hu, Z., Ju, H. “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes”, Biosens. Bioelectron., 25, 373-377, 2009.

[18]Chen, Y., Li, Y., Sun, D., Tian, D., Zhang, J., Zhu, J.J. “Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing”, J. Mater. Chem., 21, 7604-7611, 2011.

[19]Vukojević, V., Djurdjić, S., Ognjanović, M., Fabián, M., Samphao, A., Kalcher, K., Stanković, D.M. “Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons”, J. Electroanal. Chem. 823, 610–616, 2018.

[20]Palanisamy, S., Cheemalapati, S., Chen, S.M. “Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite”, Mater. Sci. Eng. C, 34, 207–213, 2014.

[21]Ekabutr, P., Chailapakul, O., Supaphol, P. “Modification of Disposable Screen-Printed Carbon Electrode Surfaces with Conductive Electrospun Nanofibers for Biosensor Applications”, J. Appl. Polym. Sci., 130, 3885-3893, 2013.