3D KAFES ÇATI MODELİNİN SONLU ELEMANLAR YÖNTEMİYLE ANSYS PROGRAMINDA MEKANİK VE ELASTİK GERİLMELERİNİN İNCELENMESİ

Bu çalışmada, kafes çatı modeli Ansys paket programında, sonlu elemanlar yöntemi kullanılarak 3 boyut olarak tasarlandı. Bu yöntem, kompleks mühendislik uygulamalarının anlaşılabilir hale getirilerek, kontrol edilebilir sistemlerle çözümünü sağlayan bir metottur. Modelin element tipi, kafes boru dış çap, et kalınlığı, elastisite modülü ve poisson oranı parametreleri malzeme özelliklerine tanımlanır. Malzeme çelik izotropik bir malzemedir. 3D kafes çatı modeline Fx, Fy, Fz kiriş eksenlerine uygulanan 25000 ve 20000 kN’luk sabit yük ve 2 MPa basınç altında toplam mekanik ve elastik gerilme analizleri yapıldı. Modelin x, y, z eksenlerinde mekanik zorlanmalara karşı gerilme ve elastik stres gerilme analizleri yapılarak yüke karşı göstermiş olduğu deformasyon şekil değişimleri incelendi. Analizler sonucunda, uygulanan yüke karşı oluşan kiriş eksenlerindeki mekanik ve elastik gerilmelerin arttığı görüldü.

INVESTIGATION OF MECHANICAL AND ELASTIC STRESSES IN ANSYS PROGRAM BY FINITE ELEMENTS METHOD OF 3D LATTICE ROOF MODEL

In this study, the lattice roof model was designed in 3 dimensions using the finite element method in the Ansys package program. This method can be understood by making the complex engineering applications is a method to provide the solution can be controlled by the system. The element type of the model, the outside diameter of the truss pipe, the thickness of the meat, the modulus of elasticity and the poisson ratio parameters are defined as material properties. The material is a steel isotropic material. A total of mechanical and elastic stress analyzes were carried out under the constant load of 25000 and 20000 kN applied to Fx, Fy, Fz beam axes and 2 MPa pressure on the 3D lattice roof model. Deformations of the model against the load were investigated by analyzing the stresses against the mechanical forces and the elastic stresses in the x, y, z axes. As a result of the analyses, it was observed that the mechanical and elastic stresses in the beam axes against the applied load increased.

___

  • Moaveni, S., “Finite element analysis theory and application with Ansys,” Prentice Hall, New Jersey, 1999.
  • Dubina, R., Zaharia, D. “Cold-formed steel trusses with semi-rigid joints,” Thin-Walled Structures, vol. 29, 273–28, 1997.
  • Fülöp, M., Ivanyi, A. “Experimentally analyzed stability and ductility behaviour of a space-truss roof system,” Thin-Walled Structures, Vol. 42, No. 2, pp. 309-320, 2004.
  • Behdinan, Z., Ali, N. Fawaz, K. “Applicability and viability of a GA based finite element analysis architecture for structural design optimization,” Computers and Structures, vol. 81, 2259–2, 2003.
  • Rover, H., C. Vantomme, D., Wastiels, J., Croes, J., Cuypers, K., Taerwe, H., Blontrock, L. “Modelling of an IPC-concrete modular pedestrian bridge,” Computers and Structures, vol. 80, 2133–2, 2002.
  • Bedford A. and Fowler W. “Statics Engineering Mechanics,” Wesley Publishing Company, vol. 624p, 1995.
  • Makowski, Z.S., “Space Structures of Today and Tomorrow Space Structures (ed. H. Nooshin), Guildford,” Elsevier, 1984.
  • Rottensteiner, F., Sohn, G., Gerke, M., J.D. Wegner, Breitkopf, U., Jung. J. “Results of the ISPRS benchmark on urban object detection and 3d building reconstruction”, ISPRS J. Photogram. Remote Sens., 93, pp.256-271, 2014.
  • Jochem, A., Höfle, B., Rutzinger, M., Pfeifer, N. “Automatic roof plane detection and analysis in airborne LiDAR point clouds for solar potential assessment”, Sensors, 9, pp. 5241-5262, 10.3390/s90705241, 2009.
  • Huang, H., Brenner, C., Sester, M. “A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data”, ISPRS J. Photogram. Remote Sens., 79, pp. 29-43, 10.1016/j.isprsjprs.2013.02.004, 2013.
  • Vitti, A.” The Mumford-Shah variational model for image segmentation: an overview of the theory, implementation and use”, ISPRS J. Photogram. Remote Sens., 69, pp. 50-64, 10.1016/j.isprsjprs.2012.02.005, 2012.
  • Blake, A., Zisserman, A., Visual Reconstruction. MIT Press. 1987.
  • Ohtake, Y., Belyaev, A., Seidel, H.P.,” Ridge-valley lines on meshes via implicit surface fitting”, ACM Trans. Graph., 23, pp. 609-612, 10.1145/1015706.1015768. 2004.
  • Rottensteiner, F. “Automatic generation of high-quality building models from LiDAR data”, IEEE Comput. Graphics Appl., 23, pp. 42-50, 10.1109/MCG.2003.1242381, 2003.
  • Wang, Y., Hao, W., Ning, X. Zhao, M., Zhang, J., Shi, Z., Zhang, X. “Automatic segmentation of urban point clouds based on the gaussian map”, Photogram. Rec., 28 , pp. 342-361, 10.1111/phor.12041, 2013.
  • Gür, A.K., Taşkaya, S., Katı, N., Yıldız, T. “Investigation of mechanical stresses of 3D truss roof model by Ansys method”, 2nd International Conference on Material Science and Technology in Cappadocia (IMSTEC’17), October 11-13, 2017, Nevsehir, Turkey, pp. 11-15.
  • Rover, C., Vantomme D., Wastiels, J., Croes J., Cuypers, K., Taerwe, H., Blontrock, L., H. “Modelling of an IPC-concrete modular pedestrian bridge”, Computers and Structures, 80, 2133-2144, 2002.
  • Hsu,T., Sınha, D.K. “Computet Aided Design: An Integrated Approach, ” West Publishing Company, St Paul, 1992.
  • Awang, M. “The Effects of Process Parameters on Steel Welding Response in Curved Plates,” Collage of Engineering and Mineral Resources at West Virginia University, Master of Science, U. S. A., ,vol. 10-21, 80, 2002.
  • Jiang, J., Collado, C., Keeley, D., Dodd B., “Room Temperature Formability of Particle- Reinforced Metal Matrix Composites”, Forging, Extrusion and Deep Drawing Composites, Volume: 26, Issue:11, Pages:785- 789, 1995.
  • Taşkaya, S. “Investigation of mechanical stresses dependent on press in St 37 steel Ansys program”, The Journal of International Manufacturing And Production Technologies (JIMPOT), 1 (1), pp. 39-46, 2017.