Bu çalışmada, mükemmel şekilde güçlenmiş aktivite, stabilite, tekrarkullanılabilirlik ve sulu çözeltilerden fenol gideriminde kullanılacak yaban turpu peroksidaz (HRP), bakır iyonları (Cu2+) ve demir oksit nanoparçacıklarından (Fe3O4 NP'ler) oluşan manyetik hibrit nano çiçeklerin (MhNF) hazırlanması rapor edildi. Önceden sentezlenmiş küçük boyutlu Fe3O4 NP'lar, sentezlenen HRP-Cu2+ hibrit nano çiçeklere (hNF'ler) immobilize edilmiştir. Sentezlenen MhNF'ler SEM, EDX ve XRD analizi kullanılarak karakterize edildi. Ayrıca FTIR kullanılarak serbest HRP ve MhNF'nin kimyasal yapıları da karakterize edildi. Sentezlenen MhNF'lerin protein kapsülleme verimleri spektrofotometrik olarak belirlendi ve tüm sentez koşulları için ~%98 olarak hesaplandı. Serbest HRP, HRP bazlı manyetik olmayan hibrit nano çiçek (hNF) ve MhNF'nin aktiviteleri sırasıyla 5847.6, 16738.2 ve 18830.5 EU/mg olarak hesaplanmıştır. Sentezlenen MhNF'lerin fenol giderimi için optimum pH'ı 7 olarak belirlendi. MhNF, tekrar kullanılmak üzere harici bir manyetik alan oluşturularak reaksiyon ortamından kolaylıkla ve hızla ayrıldı. Yedi döngüden sonra bile, MhNF'ler başlangıç aktivitelerinin yaklaşık %75'inden fazlasını korudu. Tekrarlanan kullanımın sermaye ve işletme maliyetlerini azaltabileceğine inanıyoruz. Sonuçlar, özellikle atık su arıtımı için endüstriyel uygulamada HRP'nin verimliliğinin ve uygulanabilirliğinin arttırılması açısından çok umut vericidir.

A RATIONAL SYNTHESIS OF MAGNETIC NANOPARTICLES INCORPORATED HORSERADISH PEROXIDASE NANOFLOWER AND ITS USE FOR THE REMOVAL OF PHENOL THROUGH OXIDATIVE COUPLING REACTION WITH GREAT REUSABILITY

Herein, we report preparation of magnetic hybrid nanoflower (MhNF) formed of horseradish peroxidase (HRP), copper ions (Cu2+) and iron oxide nanoparticles (Fe3O4 NPs) with greatly enhanced activity, stability, reusability and applicability for use in removal of phenol from aqueous solution. In this study, pre-synthesized small sized Fe3O4 NPs were immobilized to synthesized HRP-Cu2+ hybrid nanoflower (hNFs). The synthesized MhNFs were characterized using SEM, EDX and XRD analysis. We also characterized the chemical structures of free HRP and MhNF using FTIR. The protein encapsulation yields of synthesized MhNFs were determined spectrophotometrically and calculated as ~98% for all synthesis conditions. The activities of free HRP, HRP-based non-magnetic hybrid nanoflower (hNF) and MhNF were calculated as 5847.6, 16738.2, and 18830.5 EU/mg, respectively. The optimum pH of the synthesized MhNFs for phenol removal was determined as pH 7. MhNF was easily and rapidly separated from reaction medium by an external magnetic field to be re-used. Even after seven cycles, MhNFs maintained more than 75% of their initial activity. We believe that the repeated use can reduce the capital and operation costs. The results are very promising in terms of increasing efficiency and applicability of HRP in industrial application especially for wastewater treatment.

___

  • Erdem, H., Kalın, R., Özdemir, N. Özdemir, H., “Purification and biochemical characterization of peroxidase isolated from white cabbage (Brassica Oleracea var. capitata f. alba)”, Int. J. Food Pro., 18, 2099–2109, 2015.
  • Kalın, R., Atasever, A., Özdemir, H., “The single-step purification of peroxidase by 4-aminobenzohydrazide from turkish black radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots”. Food Chem., 150, 335–340, 2014.
  • Somturk, B., Kalın, R., Özdemir, N., “Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.” Appl. Biochem. Biotechnol.,173, 1815–1828, 2014.
  • Alemzadeh, I., Nejati, S., “Phenols removal by immobilized horseradish peroxidase”. J. Hazard. Mater., 166 (2–3), 1082–1086, 2009.
  • Homaei, A. A., Sariri, R., Vianello, F., Stevanato, R., “Enzyme immobilization: an update”. J Chem Biol, 6, 185–205, 2013.
  • Wang, S., Fang, H., Wen, Y., Cai, M., Liu, W., He, S., Xu, X., “Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater”. RSC Advances, 5, 57286, 2015.
  • Vahidi, A.K., Yang, Y., Ngo, T.P.N., Li, Z., “Simple and Efficient Immobilization of Extracellular His-Tagged Enzyme Directly from Cell Culture Supernatant As Active and Recyclable Nanobiocatalyst: High-Performance Production of Biodiesel from Waste Grease”. ACS Catal.; 5, 3157−3161, 2015.
  • Kim, J., Grate, J.W., Wang, P., “Nanostructures for enzyme stabilization”. Chem. Eng. Sci.; 61, 1017–1026, 2006.
  • Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., “Potential of different enzyme immobilization strategies to improve enzyme performance”. Adv. Synth. Catal.; 353, 2885 – 2904, 2011.
  • Jiang, D., Long, S., Huang, J., Xiao, H., Zhou, J., “Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres”. Biochem. Eng. J.; 25, 15–23, 2005.
  • Lathouder, K., Bakker, J., Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Wallin, A., “Structure dreactors for enzyme immobilization: advantages of tuning the wall morphology”, Chem. Eng. Sci.; 59, 5027 – 5033, 2004.
  • Asgher, M., Shahid, M., Kamal, S., Iqbal, H.M.N, “Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology”. J. Mol. Catal. B: Enzym., 101, 56– 66, 2014.
  • Fernandes, K.F., Lima, C.S., Pinho, H., Collins, C.H., “Immobilization of horseradish peroxidase onto polyaniline polymers”. Process Biochem.,38, 1379-1384, 2003.
  • Altinkaynak C., “Hemoglobin–metal2+ phosphate nanoflowers with enhanced peroxidase-like activities and their performance in the visual detection of hydrogen peroxide”. New Journal of Chemistry., (45), 1573, 2021.
  • Ge, J., Lei, J., Zare, R.N., “Protein–inorganic hybrid nanoflowers”. Nat. Nanotechnol., July, 428-432, 2012.
  • Altinkaynak, C., Tavlasoglu, S., Kalin, R., Sadeghian, N., Özdemir, H., Ocsoy, I., Özdemir, N., “A Hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization”. Chemosphere, 182, 122-128, 2017.
  • Altinkaynak, C., Kocazorbaz, E., Özdemir, N., Zihnioglu, F., E”gg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes”. Int. J. Biol. Macromol; 109, 205–211, 2018.
  • Cheon, H.J., Adhikari, MD., Chung, M., Tran, TD., Kim, J., Kim, MI., “Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing”. Adv. Healthcare Mater.; 1801507, 2019.
  • Feng, N., Zhang, H., Li, Y., Liu, Y., Xu, L, Wang, Y., Fei, X., Tian, J., “A novel catalytic material for hydrolyzing cow’s milk allergenic proteins: Papain-Cu3(PO4)2.3H2O-magnetic nanoflowers”. Food Chem., 311, 125911, 2020.
  • Guo, J., Wang, Y., Zhao, M., “A self-activated nanobiocatalytic cascade system based on an enzyme-inorganic hybrid nanoflowers for colorimetric and visual detection of glucose in human serum”. Sensor Actuat B-Chem., 284, 45-54, 2019.
  • Gulmez, C., Altinkaynak, C., Özdemir, N., Atakisi, O., “Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive”. Int. J. Biol. Macromol., 119, 803–810, 2018.
  • Han, J., Luo, P., Wang, L., Li, C., Mao, Y., Wang, Y., “Construction of magnetic biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal”. J.Hazard. Mater.; 380, 120901, 2019.
  • Ke, C., Fan, Y., Chen, Y., Xu, L., Yan, Y., “A new lipase-inorganic hybrid nanoflower enhanced enzyme activity”, RSC Adv., 6, 19413-1941, 2016.
  • Lee, I., Cheon, H.J., Adhikari, M.D., Tran, T.D., Yeon, T-D., Kim, MI., Kim, I., “Glucose oxidase-copper hybrid nanoflowers embedded with magnetic nanoparticles as an effective antibacterial agent”. Int J Biol Macromol., 155, 1520-1531, 2020.
  • Wang, L.B., Wang, Y.C., He, R., Zhuang, A., Wang, X., Zeng, J., Hou, J.G., “A New nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance”. J. Am. Chem. Soc.; 135, 1272−1275, 2013.
  • Wang, K-Y., Bu, S-J., Ju, C-J., Li, C-T., Li, Z-T., Han, Y., Ma, C-Y, Wang, C-Y, Hao, Z., Liu, W-S., Wan, J-Y., “Hemin-incorporated nanoflowers as enzyme mimics for colorimetric detection of foodborne pathogenic bacteria. Bioorg”. Med. Chem. lett. 28, 23-24, 2018.
  • Wu, X., Hou, M., Ge, J., “Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization”. Catal. Sci. Technol. 5, 5077-5085, 2015.
  • Zhang, B., Li, P., Zhang, H., Li, X., Tian, L., Wang, H., Chen, X., Ali, N., Ali, Z., Zhang, Q., “Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions”. Appl. Surf. Sci. 366, 328–338, 2016.
  • Zhang, B., Chen, J., Wang, J., Huyan, Y., Zhang, H., Zhang, Q., “Flowerlike BSA/Zn(PO4)2/Fe3O4 Magnetic Hybrid Particles: Preparation and Application to Adsorption of Copper Ions”. J.Chem. Eng Data,; 63, 3913-3922, 2018.
  • Ahmaruzzaman, M., Gayatri, S.L., “Activated tea waste as a potential low-cost adsorbent for the removal of p-nitrophenol from wastewater”. J. Chem. Eng. Data., 55, 4614-4623, 2010.
  • Torres, E., Bustos-Jaimes, I., Le Borgne, S., “Potential use of oxidative enzymes for the detoxification of organic pollutants”, Appl. Catal. B: Environ.; 46, 1–15, 2003.
  • Wang, M., Qi, W., Su, R., He, Z., “Advances in carrier-bound and carrier-free immobilized nanobiocatalysts”, Chem. Eng. Sci.; 135, 21–32, 2015.
  • Durán, N., Esposito, E., “Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review”, Appl. Catal. B: Environ.; 28, 83–99, 2009.
  • Fernandes, K.F., Lima, C.S., Lopes, F.M., Collins, C.H., “Properties of horseradish peroxidase immobilized onto polyaniline”. Process Biochem,; 39, 957–962, 2004.
  • Karam, J., Nicell, J.A, “Potential applications of enzymes in waste treatment”. J. Chem. Technol. Biotechnol.,; 69, 141–148, 1997.
  • Lai, Y.C., Lin, S.C., “Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution”. Process Biochem.; 40, 1167–1174, 2005.
  • Yamada, K., Akiba, Y., Shibuya, T., Kashiwada, A., Matsuda, K., Hirata, M., “Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads”. Biotechnol. Prog., 21, 823–829, 2005.
  • Zhao, Z., Zhang, J., Wang, M., Wang, Z., Wang, L., Ma, L., Huang, X., Li, X., “Structure advantage and peroxidase activity enhancement of deuterohemin-peptide–inorganic hybrid flowers”, RSC Adv., 6, 104265-104272, 2016.