Güneş Enerjisiyle Havadan İçilebilir Su Elde Edebilen Yazılım ve Donanım Destekli bir Sistem Önerisi

Tatlı su, Yeryüzünde tüketilen kaynaklar arasında en önemlilerinden bir tanesidir. Ancak küresel iklim değişikliğine bağlı kuraklıklar, hızlı nüfus artışı ve artan inşaat sektörü faaliyetleri ve bu faaliyetler sırasında tatlı su kaynaklarının korunmasına gereken önemin verilmemesi su ile ilgili sorunları giderek arttırmaktadır. Bu çalışma ile insanların tatlı su kaynaklarının korunmasına yönelik bilinçlendirilmesi amaçlanmıştır. Bu amaç doğrultusunda, havadaki nemi termoelektrik modül ve fanlar yardımıyla soğutup yoğuşturarak tatlı su elde edebilen yazılım ve donanım destekli bir sistem geliştirilmiştir. Geliştirilen sistem, hava şartlarına göre otomatik olarak aktif veya pasif hale geçebilmekte ve emsallerinden daha az enerji kullanmaktadır. Güneş enerjisi ile şebekeden bağımsız olarak da çalışabilen sistem, aynı zamanda su damlacıklarının oluştuğu yüzeyde statik elektrik etkisiyle ozon gazı üreterek elde edilen suyu arıtmakta ve içilebilir hale getirebilmektedir.

A Software and Hardware Supported System Suggestion for Obtaining Potable Water from Air with Solar Energy

Fresh water is one of the most important resources consumed. However, droughts due to global climate change, rapid population growth increasing construction sector activities and the lack of importance to protect freshwater resources during these activities increase the problems related to water. This study aims to raise awareness among people about the protection of freshwater resources. For this purpose, a software and hardware-supported system has been developed to obtain fresh water by cooling and condensing the humidity in the air with the help of thermoelectric modules and fans. The developed system can automatically become active or passive according to the weather conditions and uses less energy than its counterparts. The system, which can also operate independently of the grid with solar energy, can also purify the water obtained by producing ozone gas with the effect of static electricity on the surface where water droplets form and make it drinkable.

___

  • Alenezi, A., Jung, H. & Alabaiadly, Y. (2023). Experimental and numerical analysis of an atmospheric water harvester using a thermoelectric cooler. Journal Atmosphere, Vol. 14.
  • Avhad, S., Dandekar, A., Chandak, A., Kajale, P. & Gohel, N. S. (2021). Theoretical Analysis of Atmospheric Water Generator using Thermoelectric Cooler. The International Conference on Emerging Trends in Engineering, Yukthi 2021.
  • Balkrishan. Gupta, A., Chand, S., Patel, N. K. & Soni, A. (2016). A review on thermoelectric cooler. International Journal for Innovative Research in Science & Technology, Vol. 2.
  • Bhushan, B. (2020). Design of Water Harvesting Towers and Projections for Water Collection From Fog and Condensation. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, March 2020.
  • Booth, D. B. (1991). Urbanization and the natural drainage system impacts, solutions and prognoses. The Northwest Environmental Journal, Vol. 7, No 1.
  • Eslami, M., Tajeddini, F. & Etaati, N. (2018). Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers. Energy Conversion and Management, Vol. 174, 15 October 2018, p. 417-429.
  • Faqih, A. (2005). Production of Potable Water and Freshwater Needs for Human, Animal and Plants from Hot and Humid Air. USA Patent Document: US6868690B2.
  • Heidari, H., Arabi, M., Warziniack, T. & Sharvelle, S. (2021). Effects of Urban Development Patterns on Municipal Water Shortage. Frontiers in Water, Vol. 3.
  • Kadhim, T. J., Abbas, A. K. & Kadhim H. J. (2020). Experimental study of atmospheric water collection powered by solar energy using the Peltier effect. IOP Conference Series: Materials Science and Engineering, Vol. 671.
  • Liu, S., He, W., Hu, D., Lv, S., Chen, D., Wu, X., Xu, F. & Li, S. (2017). Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method. Energies, Vol. 13.
  • Maleki, M., Eslamian, S. & Hamouda, B. (2021). Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals. Wiley, 1st edition (March 1, 2021), p. 245-257 (Chp. 16).
  • Max, M. D. (2005). Apparatus and Method For Harvesting Atmospherıc Moisture. USA Patent Document: US6945063B2.
  • Özcan, G., Çelebi, N. & Arpacıoğlu, Ü. (2022). Portable irrigation system producing water from air for sustainable living. Journal of Architectural Sciences and Applications, 2022, 7 (2), 501-510.
  • Pamuk, R. & Kuruoğlu, M. (2016). İnşaat sektöründe sürdürülebilirlik ve bina inşaatlarında evrensel uygulama örnekleri. Beykent University Journal of Science and Engineering Sciences, Vol. 9, p. 161-177.
  • Parameter Generation & Control. (2019). How to Use a Psychrometric Chart. Access address (05.06.2023): https://humiditycontrol.com/psychrometric-chart/.
  • Pouya, S., Türkoğlu, H. & Arpacıoğlu, Ü. (2020). Using the analytic hierarchy process to evaluate sustainability factors in watershed planning and management. Urbani Izziv-Urban Challenge, Vol. 31.
  • Reidy, J. J. (2008). Thermoelectric, High-Efficiency Water Generating Device. USA Patent Document: US7337615B2.
  • Seydim, Z. B., Greene, A. K. & Seydim, A. C. (2004). Use of ozone in the food industry. LWT-Food Science and Technology, Vol. 37, June 2004, p. 453-460.
  • Shiklomanov, I. A. (2009). Appraisal and assessment of world water resources. Water International, Vol. 25, p. 11- 32.
  • The Engineering Tool Box. (2023). Air-maximum moisture carrying capacity, Access address (05.06.2023):https://www.engineeringtoolbox.com/maximum-moisture-content-air-d_1403.html
  • Verbrugghe, N. & Khan, A. Z. (2023). Water Harvesting Through Fog Collectors: a Review of Conceptual, Experimental and Operational Aspects. International Journal of Low-Carbon Technologies, Vol. 18.
  • Wada, Y., Beek, L., Wanders N. & Bierkens, M. (2013). Human water consumption ıntensifies hydrological drought worldwide. Environmental Research Letters, Vol. 8, No 3.
  • World Health Organization. (2017). Guidelines for Drinking-Water Quality. Access address (05.06.2023): https://www.who.int/publications/i/item/9789241549950
  • Yang, P., Clark, D. S. & Yaghi, O. M. (2021). Envisioning the “Air Economy”-powered by reticular chemistry and sunlight for clean air, clean energy and clean water. Molecular Frontiers Journal, Vol. 05, No. 01n02, p. 30-37.