Bina Yönetmelik Uygunluk Kontrolü Sürecinde Bina Projesine Ait Verilerin Gösterimleri

BIM, inşaat endüstrisinde bina projelerin bilgi alışverişinde en etkili platform olarak kabul edilmektedir ve çeşitli yazılımların geliştirilmesini desteklemektedir. BIM tasarımcı, mimar, mühendis, yüklenici, mal sahibi vb. gibi projede yer alan katılımcılar için bina projelerinin bina yönetmeliklerine ve standartlarına göre uygunluğunun otomatik veya yarı otomatik olarak kontrol edilmesini kolaylaştırmaktadır. Bina Yönetmelik Uygunluk Kontrolü (Automated Code Compliance Checking, ACCC) sürecinde bina projesine ait veriler iki şekilde temsil edilmektedir. Bunlar BIM modeli ve IFC veya IFCXML veri standardıdır. Bu çalışmada, ACCC sürecinde bina projesine ait verilerin BIM, IFC ve IFCXML gösterimi örnek konut projesi üzerinden anlatılmıştır. Örnek konut projesi bir katı bodrum olmak üzere toplamda 9 kattan, 8 daireden ve 2 asansörden oluşmaktadır.

The Building Project’s Data Representations in the Automated Code Compliance Checking Process

BIM is widely acknowledged as the most effective platform for building project information sharing in the construction sector. It aids in the creation of numerous software applications. It enables automated or semi-automated ACCC of the building projects for compliance with building regulations and standards for parties (architect, contractor, engineer, owner, designer, etc.) participating in the building production process. The data from the building project is represented in two ways in the ACCC process. These are BIM Model, and IFC or IFCXML Data Standard. In this study, the BIM, IFC, and IFCXML representations of the building project data were described using a sample housing project in the ACCC process. The sample housing project has 9 floors, 8 units, and 2 elevators.

___

  • Aydın, M., ve Yaman, H. (2018). Bina enformasyonu modellemesi (bim) tabanlı bina yönetmelik uygunluk kontrolü literatürüne genel bir bakış. Tasarım + Kuram, 14(25), s. 59–77. https://doi.org/10.14744/tasarimkuram.2018.25744
  • Aydın, M. ve Yaman, H. (2020a). Bina yönetmelik uygunluk kontrolü kavramına yönelik bir literatür taraması. Tasarım + Kuram, 16(29), s. 79–97. https://doi.org/10.14744/tasarimkuram.2020.86158
  • Aydın, M. ve Yaman, H. (2020b). Domain knowledge representation languages and methods for building regulations. In: Ofluoglu S., Ozener O., Isikdag U. (eds) Advances in Building Information Modeling. EBF 2019. Communications in Computer and Information Science, Vol. 1188 CCIS, pp. 101–121, Springer, Cham. https://doi.org/10.1007/978-3-030-42852-5_9
  • buildingSMART. (2020). buildingSMART International. https://www.buildingsmart.org
  • buildingSMART Türkiye. (2019). buildingSmart Türkiye. http://www.buildingsmartturkiye.org/index.php/hakkinda/buildingsmart-turkiye
  • Dimyadi, J., ve Amor, R. (2013). Automated Building Code Compliance Checking – Where is it at? Proceedings of the 19th World Building Congress: Construction and Society, 5-9 May, Brisbane, Australia, pp. 172–185.
  • Dimyadi, J., Clifton, C., Spearpoint, M., ve Amor, R. (2014). Regulatory Knowledge encoding guidelines for automated compliance audit of building engineering design. Computing in Civil and Building Engineering (2014), pp. 536–543. https://doi.org/10.1061/9780784413616.067
  • Ding, L., Drogemuller, R., Rosenman, M., Marchant, D., ve Gero, J. (2006). Automating code checking for building designs - DesignCheck. Clients Driving Innovation: Moving Ideas into Practice, pp. 1–16. https://ro.uow.edu.au/engpapers/4842
  • Fenves, S. J., Garrett, J. H., Kiliccote, H., Law, K. H., ve Reed, K. A. (1995). Computer representations of design standards and building codes: US perspective. The International Journal of Construction Information Technology, 3(1), pp. 13–34.
  • Graphisoft. (2018). ArchiCAD 21. https://www.graphisoft.com/archicad/
  • Greenwood, D., Lockley, S., Malsane, S., ve Matthews, J. (2010). Automated Compliance Checking Using Building İnformation Models. Proceedings of the Construction, Building and Real Estate Research Conference, 2-3 September, Paris, France, pp. 363–371.
  • IAI. (1997). Release 1.0 IFC Model Architecture. International Alliance for Interoperability. http://www.buildingsmart-tech.org/ifc/
  • ISO_10303-11. (1997). Product Data Representation and Exchange Description Methods: The EXPRESS Language Reference Manual. ISO - International Organization for Standardization. https://www.iso.org/standard/38047.html
  • Lee, H., Lee, J.-K., Park, S., ve Kim, I. (2016). Translating building legislation into a computer-executable format for evaluating building permit requirements. Automation in Construction, 71, pp. 49–61. https://doi.org/10.1016/j.autcon.2016.04.008
  • Martins, J. P., ve Monteiro, A. (2013). LicA: a bim based automated code-checking application for water distribution systems. Automation in Construction, 29(23), pp. 12–23. https://doi.org/10.1016/j.autcon.2012.08.008
  • Nawari, N. O. (2012). Automating codes conformance. Journal of Architectural Engineering, 18(4), pp. 315–323. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000049
  • Nawari, N. O., ve Alsaffar, A. (2015). Understanding computable building codes. Civil Engineering and Architecture, 3(6), pp. 163–171. https://doi.org/10.13189/cea.2015.030601
  • NBIMS-US. (2015). National BIM Standard–United States Version 3. National Inst. of Building Sciences Washington, DC. https://www.nibs.org/news/242663/buildingSMART-alliance-Releases-NBIMS-US-Version-3.html
  • Shih, S.-Y., Sher, W. ve Giggins, H. (2013). Assessment of the building code of Australia to inform the development of BIM-enabled code checking system. Proceedings of the 19th World Building Congress: Construction and Society, 5-9 May, Brisbane, Australia, pp. 1–12.