Piroklastik Kayaçların Elastisite Modülünün Agrega/Kayaç Özellikleri Kullanılarak Modellenmesi

Kayaçların elastisite modülü (E), maden ve inşaat mühendisliği alanlarında, petrol endüstrisinde çok kritik bir parametredir ve kaya malzemelerinin sertliğini yansıtır. Elastisite modülü, malzemeye uygulanan gerilmenin meydana gelen deformasyona oranıdır. Elastisite değeri arttıkça, deformasyona ulaşmak için gereken gerilme değeri artar. Tek eksenli basınç dayanımı (UCS) ve elastisite modülü birlikte deformasyon davranışını kontrol ederler. Bu çalışmanın temel amacı, yapı taşı olarak kullanılan piroklastik kayaçların fizikomekanik özelliklerini belirlemek ve elastisite modülü (temel mekanik özellik) ile nispeten uygulaması kolay ve düşük maliyetli olan mühendislik özellikleri arasındaki ilişkileri araştırmaktır. Bu çalışmada 27 piroklastik kayaçla elastisite modülü (E), darbe dayanımı (DN), nokta yük dayanım indeksi (Is50), Böhme aşınma kaybı (BSA), kaya dayanım katsayısı (CRS), İsveç kırılganlık indeksi (S20), ultrasonik ses hızı (UPV) ve birim hacim ağırlık (UW) testleri gerçekleştirilmiştir. Piroklastik kayaçların elastisite modülünün tahmini için basit ve çoklu doğrusal regresyon analizleri (SPSS) yapılmış ve denklemlerin doğrulanması için F ve t-testleri kullanılmıştır. Sonuçlar, kayaçların elastisite modülü ve mühendislik özellikleri arasında iyi ve yeterli ilişkiler olduğunu göstermektedir. Ayrıca, çoklu regresyon modelleri, basit modellerden daha iyi tahmin verimliliğine sahiptir ve piroklastik kayaçların elastisite modülünü yeterli güvenirlikle tahmin etmek için uygulanabilirler. Türetilen eşitlikler incelendiğinde, piroklastik kayaçların elastisite modülünün tahmini için kullanılan parametreler arasında Is50, CRS ve UPV gibi testler oldukça etkilidir.

___

  • Aufmuth, R.E., (1973), A systematic determination of engineering criteria for rocks. Bull Assoc Eng Geol, 11: 235-245.
  • Babuska, V., Pros, Z., (1984), Velocity anisotropy in granodiorite and quartzite due to the distribution of microcracks. Geophys J R Astron Soc, 76(1): 121-127.
  • Baykasoğlu, A., Güllü, H., Çanakçı, H., Özbakır, L., (2008), Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl, 35(1): 111-123.
  • Birch, F., (1960), The velocity of compressional waves in rocks 10 kbars: Part 1 J Geophys Res, 65(4): 1083-1102.
  • Chen, C.S., Pan, E., Amadei, B., (1998), Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci, 35(1): 43–61.
  • Claesson, J., Bohloli, B., (2002), Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci, 39(8): 991–1004.
  • Çanakci, H., Pala, M., (2007), Tensile strength of basalt from a neural network. Eng Geol, 94(1): 10-18.
  • Çobanoğlu, İ., Çelik, S.B., (2008), Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ, 67: 491-498.
  • Deere, D.U., Miller, R.P., (1966), Engineering classification and index properties for intact rocks. Tech. Report. Air Force Weapons Lab. New Mexico, No. AFNL-TR, 65-116.
  • Diamantis, K., Gartzos, E., Migiros, G., (2009), Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Eng Geol, 108:199-207.
  • Gaviglio, P., (1989), Longitudinal waves propagation in a limestone: the relationship between velocity and density. Rock Mech Rock Eng, 22(4): 299-306.
  • Inoue, M., Ohomi, M., (1981), Relation between Unixial compressive strength and elastic wave velocity of soft rock. IN: Akai K,
  • Mayashi M, Nishimatsu Y, editors. Proceeding of the Int. Symposium on Weak Rock, Tokyo, p. 9-13.
  • ISRM, (1981), Rock characterization, testing and monitoring – Commission on standardization laboratory and field results. Suggested methods for determining hardness and abrasiveness of rocks. Part 4, p:102-103, Pergamon, Oxford.
  • Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., Sahamieh, R.Z., Abdi, Y., (2016), A correlation between P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones. Arab J Geocsi, 9(10): 568.
  • Kılıç, A., Teymen, A., (2008), Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ, 67(2): 237-244.
  • King, M.S., Chaudhry, N.A., Shakeel, A., (1995), Experimental ultrasonic velocities and permeability for sandstones with aligned cracks, Int J Rock Mech Min Sci Geomech Abstr, 32(2): 155-163.
  • Kurtuluş, C., Sertçelik, F., Sertçelik, I., (2016), Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geodaetica et Geophysica, 51(3): 571-582.
  • Mccann, D.M., Culshaw, M.G., Northmore, K.J., (1990), Rock mass assessment from seismic measurements. In: Bell, Culshaw, Cripps, Coffey (eds) Fields testing in Eng Geol, Geol. Soc. Eng. Ape. Pub., 6(1): 257-266.
  • Minaeian, B., Ahangari, K., (2013), Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geocsi, 6(6):1925-1931.
  • Sachpazis, C.I., (1990), Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull Int Assoc Eng Geol, 42(1): 75-83.
  • Sharma, P.K., Singh, T.N., (2008), A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ, 67(1):17-22.
  • Singh, R.N., Hassani, F.P., Elkington, P.A.S., (1983), The application of strength and deformation index testing to the stability assessment of coal measures excavations. Proc. 24th US Symp. On Rock Mech., Texas A&M Univ. AEG, pp.599-609.
  • Singh, T.N., Dubey, R.K., (2000), A study of transmission velocity of primary wave (P-wave) in Coal Measures sandstone. J Sci Ind Res, 59: 482-486.
  • Singh, T.N., Kanchan, R., Saigal. K., Verma, A.K., (2004), Prediction of P-wave velocity and anisotropic properties of rock using Artificial Neural Networks technique. J Sci Ind Res, 63(1): 32-38.
  • Song, I., Suh, M., Woo, Y.K., Hao, T., (2004), Determination of the elastic modulus of foliated rocks from ultrasonic velocity measurements. Eng Geol, 72(3): 293-308.
  • Tercan, A.E., Ozcelik, Y., (2006), Canonical ridge correlation of mechanical and engineering index properties. lnt J Rock Mech Min Sci, 43(1): 58-65.
  • Tugrul, A., Zarif, I.H., (1999), Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol, 51:303-317.
  • TS 699, (2009), Doğal yapı taşları- İnceleme ve laboratuvar deney yöntemleri, Ankara.
  • Wang, Q.Z., Jia, X.M., Kou, S.Q., Zhang, Z.X., Lindqvist, P.A., (2004), The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min, 41(2): 245-253.
  • Yagiz, S., (2011), P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci, 34(4): 947-953.