Deltamethrinin Beyinde Oluşturduğu Oksidatif Hasarın Önlenmesinde Funalia Trogii\'nin Rolü

Türkçe Özet: Amaç: Deltamethrin piretroid grubundan bir insektisit olup Mersin ili ve çevresi tarım alanlarında yaygın olarak kullanılmaktadır. Son dönemlerde insektisitlerin canlılar üzerindeki zararlı etkilerini gidermek için tıbbi bitki ve mantarlardan yararlanılmaktadır. Bu çalışmada bir tıbbi mantar olan Funalia trogii\'nin deltamethrine maruz kalmış sıçanların beyninde oluşabilecek oksidatif hasarın önlenmesinde etkili olup olmayacağı araştırılmıştır. Yöntem: Çalışmamızda toplam 21 Wistar albino sıçan kullanılmış ve her grupta 7 hayvan olacak şekilde 3 gruba ayrılmıştır. Kontrol grubuna deney boyunca hiçbir işlem uygulanmamıştır. Deltamethrin grubu 30 gün boyunca 1.28 mg/kg deltamethrin ve deltamethrin+mantar grubu ise 30 gün boyunca 1.28 mg/kg deltamethrin ve 0.5 mL Funalia trogii ekstresi almıştır. Çalışma sonunda tüm hayvanlar sakrifiye edilmiş ve beyin dokularında antioksidan aktivitenin tayini için süperoksit dismutaz ve katalaz enzimlerine, lipid peroksidasyonu belirlemek için ise malondialdehit düzeylerine bakılmıştır. Bulgular: Deltamethrin ve deltamethrin+mantar gruplarının malondialdehit düzeyleri kontrol grubuna kıyasla yüksek bulunmuştur. Deltamethrin+mantar grubunun malondialdehit düzeyi ise deltamethrin grubuna kıyasla düşük bulunmuş ancak bu düşüşün anlamlı olmadığı gözlenmiştir (p>0.05). Deltamethrin grubunun süperoksit dismutaz aktivitesi kontrole göre yüksek ve katalaz aktivitesi ise düşük bulunmuştur. Deltamethrin+mantar grubunun süperoksit dismutaz aktivitesi deltamethrin grubuna kıyasla istatistiksel olarak düşük, katalaz aktivitesi ise yüksek bulunmuştur (p<0.05). Sonuç: Bu verilere bağlı olarak deltamethrinin lipid peroksidasyonunu indüklediği söylenebilir. Funalia trogii ekstresinin uygulanması ise deltamethrin ile maruziyette lipid peroksidasyonunu azaltarak oksidatif stresin önlenmesine yardımcı olmaktadır. Sonuç olarak deltamethrinin beyin dokusunda oluşturduğu lipid peroksidasyonu önlemede, Funalia trogii\'nin olumlu etkisi olduğu düşünülebilir.

Deltamethrinin Beyinde Oluşturduğu Oksidatif Hasarın Önlenmesinde Funalia Trogii\'nin Rolü

Abstract The Role of Funalia trogii for Prevention of Oxidative Damage in Brain Tissue Induced by Deltamethrin Objective: Deltamethrin, a synthetic prethyroid material, has been widely used as an insecticide on the agricultural areas in the city of Mersin and its outskirts. Recently, medical plants and fungi have been used to avoid harmful effects of insecticides on the living organisms. In this study, the preventive effect of a medical fungus: Funalia trogii, on the oxidative damage in the brains of the rats that were subjected to deltamethrine was investigated. Method: In this study, 21 Wistar albino rats were used. Animals were divided into 3 groups with 7 rats in each group. Control group was not subjected to any procedure throughout the study. Deltamethrin group received 1.28 mg/kg deltamethrin over 30 day period whereas 1.28 mg/kg deltamethrin and 0.5 mL of Funalia trogii extract were administered to the deltamethrin+fungus group for the same period. In the end, all the animals were sacrificed. Antioxidant activities were determined in the brain tissues based on superoxide dismuthase and catalase enzyme levels. Also, malondialdehyde levels were measured for lipid peroxidation. Results: It was found that malondialdehyde levels of both the deltamethrin and the deltamethrin+fungus groups are higher than control group. Malondialdehyde level of the deltamethrin+fungus group was lower than that of the deltamethrin group. However, it wasn\'t statistically significant (p>0.05). Superoxide dismutase activity of the deltamethrin group was higher, but catalase activity was lower than control group. Superoxide dismutase activity of the deltamethrin+fungus group was lower. On the other hand, its catalase activity was higher than that of the deltamethrin group, statistically (p<0.05). Conclusion: Based on the data, it may be suggested that deltamethrin induces the lipid peroxidation. Treatment with Funalia trogii extract helps preventing oxidative stress by reducing lipid peroxidation caused by deltamethrin exposure. Thus, it can be stated that Funalia trogii could prevent lipid peroxidation in the brain tissue exposed to deltamethrin.

___

Soltaninejad K, Abdollahi M. Current opinion on the

science of organophosphate pesticides and toxic stress: a

systematic review. Med Sci Monit 2009;15:75—90.

Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A.

Pesticides and oxidative stress: a review. Med Sci Monit 2004;10:14177.

Banerjee BD, Seth V, Ahmed RS. Pesticide—induced

oxidative stress: perspectives and trends. Rev Environ

Health 2001;16:1-40.

Elsayed NM. Antioxidant mobilization in response to

oxidative stress: a dynamic environmental—nutritional

interaction. Nutrition 2001;17:828—34.

Adibhatla RM, Hatcher JF. Altered lipid metabolism in

brain injury and disorders. Subcell Biochem 2008;49:241— 68.

Lehtinen MK, Bonni A. Modeling oxidative stress in the

central nervous system. Curr M01 Med 2006;61871-81.

Halliwell B, Chirico S. Lipid peroxidation: its mechanism,

measurement and significance. Am J Clin Nutr 1993;57:715—25.

Laskowski DA. Physical and Chemical properties of

pyrethroids. Rev Environ Çantam Toxic-ol 2002;174:49- 170.

Bradberry SM, Cage SA, Proudfoot AT, Vale JA.

Poisoning due to pyrethroids. Toxicol Rev 2005 24193-106.

Vais H, Williamson MS, Devonshire AL, Usherwood PN. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 2001;57:877—88.

Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to biorcmcdiatc PAH-contaminatcd samples. Chemosphere 2003 ;52: 1539—46.

Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodnlating polysaccharides. Appl Microbiol Biotechnol 2002;60:258—74. Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med 2006;49:159-70.

Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. App M icrobiol Biotechnol 2005;67:453-638.

Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BR. Degradation of xenobiotic compounds by lignin-degrading White—rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 2005;43:301—12.

Unyayar A, Demirbilek M, Turkoglu M, Celik A, Mazmanci MA, Erkurt EA, Unyayar S, Cckic O, Atacag H. Evaluation of cytotoxic and mutagenic effects of Coriolus versicoloı' and Funalia tı'ogii extracts on mammalian cells. Drug Chem Toxicol 2006;29:69—83.

http://WWW.inchem.org/documents/jmpr/jmpmono/VO80prl 4.htm

Yagi K. Simple procedure for specific enzyme of lipid hydroperoxides in serum or plasma. Methods Mol Biol 1998;108:107-10.

Sun Y, Oberley LW, Ying L. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988;34:497— 500.

Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121— 6.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin Phenol reagent. J Biol Chem 1961;193:265-75.

Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant—related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 2009;674:137—47.

Tuzmen N, Candan N, Kaya E, Demiryas N. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidaiive defense mechanisms and lipid peroxidation in rat liver. Cell Biochem Fimct 2008;26:119—24. Celik A, Mazmanci B, Carnlica Y, Comelekoglu U, Askin A. Evaluation of cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow by gavage administration. Ecotox Environ Safe 2005;61 :128-33.

Balh E, Mazmancı B, Mazmancı MA, Ünyayar A, Akarsubaşı l, Çömelekoğlu Ü. Deltametrinin karaciğerde oluşturduğu lipit peroksidasyonunda Funalia trogii’nin koruyucu rolü. Mersin Üniversitesi Sağlık Bilimleri Dergisi 2009;2:23—9.

Atessahin A, Yilmaz S, Karahan I, Pirincci I. Tasdemir B. The effects of vitamin E and selenium on cypermethrin— induced oxidative stress in rats. Turk J Vet Anim Sci 2005;29:385-91.

Kale M, Rathorc N, John S, Bhatnagar D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicology letters 1999; l 05 : 1 97—205.

Prasamthi K, Muralidhara, Rajini PS. Fenvalerate-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil. Food Chem Toxicol 2005;43:299—306, Ber/(oz ve ark.

Nasııti C, Cantalamessa F, Falcioni G, Gabbianelli R.

Different effects of Type I and Type II pyrethroids on

erythrocyte plasma membrane properties and enzymatic

activity in rats. Toxicology 2003;191:233—44.

Sayeed l, Parvez S, Pandey S, Bin—Hafeez B, Haque R,

Raisuddin S. Oxidative stress biomarkers of exposure to

dcltamcthrin in frcshwatcr fish. Channa punctatus Bloch.

Ecotoxicol Environ Saf 2003;56:295-301 .

Lodovici M, Casalini C, Briani C, Dolara P. Oxidative

liver DNA damage in rats treated with pesticide mixtures.

Toxicology 1997;117:55-60.

Duran N, Esposito E. Potential applications of oxidative enzymes and phenoloxidaseilike compounds in wastewater and soil treatment: a review. App Catal B-Erwiron 2000;28:83-99. Levin L, Vialeb A, Forchiassina A. Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int Biodeter Biodegr 2003;52:1-5. Elmastaş M, Gülçin ı, Öztürk L, ışıldak o, lbaoğlu G. Defne (Laurus nobilis L.) yaprağının antioksidan özelliğinin incelenmesi, XVII Ulusal Kimya Kongresi Bildiri Kitabı, lstanbul, 8—11 Eylül 2003, 5279.

Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 2007;101:267—73.

Barros L, Calhelha RC, Vaz JA, Ferreira ICFR, Baptista P, Estevinho LM. Antimicrobial activity and bioactive compounds of portuguese wild edible mushrooms methanolic extracts Eur Food Res-Techno] 2007;225:151—6.

Pointing SB. Feasibility of bioremediation by white—rot fungi. Appl Microbiol Biotechnol 2001 ;57220-33.

Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants . Im Bindeter Biodegr 2000;46:5 | -9.

Apohan E, Yesilada O. Role of white rot fungus Funalia trogii in detoxification of textile dyes. 1 Basic Microbial 2005;45:99-105.

Haglund C, Levin L, Forchiassin F, Lopez M, Viale A. Degradation of environmental pollutants by Trametes trogii. Rev Argent Microbial 2002;34: 157—62.