The investigation of moisture and fat analysis of economically important pollen grains collected by Apis mellifera L.

Mayıs, Haziran, Temmuz, Ağustos ve Eylül aylarında, arıcılığın yoğun olarak yapıldığı Bursa’nın Cumalıkızık, Narlıdere, Akçalar, İkizce, Çekrice ve Baraklı Bölgeleri’nden polen örnekleri toplanmıştır. Toplanan polenlerden arıların miktar bakımından en çok topladığı 14 takson polen, ekonomik olarak önemli olduğu gerekçesiyle organoleptik analizler için çalışılmaya uygun bulunmuştur. Mikroskop ile yapılan teşhisler sonucunda 8 familyaya ait 14 takson belirlenmiştir. Bu taksonlarda Karl Fischer metoduna göre nem içeriği ve Soxhlet ekstraksiyon metoduna göre toplam yağ içeriği incelenmiştir. Yaş polenlerde yapılan Karl Fischer nem analizi sonucunda P. rhoeas L. %21.63 ile en yüksek nem içeriğine sahip olarak bulunmuştur. Tüketicinin uyguladığı koşullarda kurutulan (45°C’de 6 saat) C. transslyvanica (L.) Schrader ise %4.40 ile en düşük nem içeriğine sahiptir. Soxhlet ekstraksiyon metoduna göre en fazla total yağ içeriği %8.75 ile R. raphanistrum L.’da ve en düşük total yağ içeriği ise %3.95 ile C. sativa Miller’de bulunmuştur.

Apis mellifera tarafından toplanan ekonomik önemi olan polenlerin nem ve yağ analizinin araştırılması

Pollen samples were collected during from May to September from six regions where the most of the beekeeping process is realized in Bursa in Turkey. 14 kinds of pollen taxa collected by honeybees and which have the highest amount compared to the others were selected as appropriate ones to study for moisture and total fat analysis because of their economical importance. As a result of identifications which have been made in microscope, 14 pollen taxa belong to 8 family have been determined. In these taxa moisture contents were examined by to Karl Fischer method and total fat contents were by Soxhlet extraction method. As a result of Karl Fischer, which was used in wet pollen grains, P. rhoeas L. had the highest moisture content with 21.63%. The least moisture content, 4.40%, was found for C. transslyvanica (L.) Schrader in the dry samples, which were dried within the conditions applied by the producers (6 hours in 45°C). According to Soxhlet extraction method, the highest total fat content 8.75% was found for R. raphanistrum L. and C. sativa Miller had the least total fat content with 3.95%.

___

  • 1. Krell, R., Value-Added Products from Beekeeping, Fao Agricultural Services Bulletin No. 124, Chapter 3, Pollen, http://www.fao.org/docrep, 1996.
  • 2. Chambers, S. R., Honeybee Collected Pollen Its Harvest, Drying, Winnowing and Packaging, 1980.
  • 3. Day, S., Beyer, R., Mercer, A., Ogden, S., The Nutrient Composition of Honeybee-Collected Pollen in Otago, New Zealand, Journal of Apicultural Research, 29, 3, 138-146 p., 1990.
  • 4. Bonvehi, S. J., Plant Origin of Honeybee-Collected Pollen Produced in Spain, An. Asoc. Palinol. Leng. Esp. 4, 73-78 p., 1988.
  • 5. Bonvehi, S. J., Jorda, E. R., Nutrient Composition and Microbiological Quality of Honeybee-Collected Pollen in Spain, Journal of Agricultural Food Chemistry, 45, 725-732 p., 1997.
  • 6. Collin, S., Vanhavre , Th., Odart, E., Bouseta, A., Heat Treatment of Pollens: Impact on Their Volatile Flavor Constituents, Journal of Agricultural Food Chemistry, 43, 444-448 p., 1995.
  • 7. Mossel, D. A. A., Water Relations of Foods. In International Symposium Glasgow; Duckworth, R.B., Ed.; Academic Press: London, 347-361 p., 1974.
  • 8. Schmidt, J. O., Bee Products Chemical Composition and Application, Bee Products Propertie Applications and Apiterapy, 15-25 p., 1996.
  • 9. Muniategui, S., Sancho, M. T., Terradillos, L. A., Huidobro, J. F., Simal-Lozano, J., New Method for Routine Pollen Analysis of Bee-Collected Pollen, Apicultural Research, 133, 3, 213-215 p., 1993.
  • 10. Herbert Jr, E. W., “Honey bee nutrition”. Chapter 6, The Hive and the Honey Bee. Revised edition. Dadant & Sons, Hamilton, Illinois, 1992.
  • 11. Singh, S., Saini., K. Jain, K. L. “Quantitative comparison of lipids in some pollens and their phagostimulatory effects in honey bees”. Journal of Apicultural Research, 38: 87–92, 1999.
  • 12. Wodehouse, R. P., Pollen Grains, Mc Graw, Hill N. Y., 106-109 p., 1935.
  • 13. Erdtman, G., Handbook of Palynology, Hafner Publishing Co., New York, 486 p., 1969.
  • 14. Aytuğ, B., İstanbul Çevresi Bitkilerinin Polen Atlası, İstanbul, 330 s., 1971.
  • 15. Kapp, R. O., Pollen and Spores, 249 p., 1971.
  • 16. Markgraf V., D’Antoni, H. L., Pollen Flora of Argentina, The University of Arizona Press, Tucson, Arizona, 208 p., 1978.
  • 17. Nilsson, S., Praglowski, J., Nilsson, L., Atlas of Airborne Pollen Grains and Spores in Northern Europe, Stockholm, 159 p., 1983.
  • 18. Iwanami, Y., Sasakuma, T., Yamada, Y., Pollen : Illustrations and Scanning Electronmicrographs, 191 p., 1988.
  • 19. Faegri, K., Iversen, J., Textbook of Pollen Analysis, Ed.; Faegri, K., Kaland, P. E., Krzywinski, K., John Wiley & Sons, Chichester, IV Edition, 328 p., 1989.
  • 20. Moore, P. D., Webb, J. A., Collinson, M. E., Pollen Analysis, Blackwell Scientific Publications, London, U.K., 216 p., 1991.
  • 21. Pehlivan, S., Türkiye’nin Alerjen Polenler Atlası, Ünal Ofset, Ankara, 191 s., 1995.
  • 22. D’Albore, G. R., Textbook of Melissopalynology, Apimondia Publishing House, Bucharest, 308 p., 1997.
  • 23. Swaile, B., Soxhlet Extraction of Fat from French Fries, www.terrificscience.org/lessonexchange/PACTPDF/SoxhletExtraction.pdf,2001.
  • 24. Qingdian, L., Ying, L., Jianping, L., Yield and Nutritional Value of Rosa laxa Retz Pollen, Scientia Horticulturae, 71, 43-48 p., 1997.