Fiber Takviyeli Silindirik Kabuğun Ekranlama Etkinliğinin Analizi ve Simülasyonu

Bu çalışmanın amacı, fiber takviyeli silindirik bir kabuğun ekranlama etkinliği performansını analiz etmek ve modellemektir. Silindirik kabuğun ekseni üzerinde oluşan elektromanyetik alanları hesaplamak için bir matris modeli sunulmuştur. Silindirik kabuğun ekranlama etkinliği performansı, silindir yarıçapı, kabuğun kalınlığı ve kabuğun elektriksel iletkenliği gibi çeşitli parametreler için hesaplanmıştır. Ayrıca, analitik sonuçları doğrulamak için Elektromanyetik Alan Simülasyon Yazılımı (CST) programı ile silindirik kabuğun 3 boyutlu bir modeli oluşturulmuştur. Analitik hesaplamalar ve simülasyonlar TM modu için gerçekleştirilir. Analitik sonuçların ve CST simülasyonlarının karşılaştırılması sonucunda iyi bir uyum elde edilmiştir.

Analysis and Simulation of Shielding Effectiveness of a Fiber Reinforced Cylindrical Shell

The purpose of the paper is to analyze and simulate the shielding effectiveness (SE) performance of a fiber reinforced cylindrical shell. A matrix model is presented to evaluate the transmitted electromagnetic fields on the axis of cylindrical shell. SE performance of the cylindrical shell is calculated for various parameters such as radius of cylinder, shell thickness and shell conductivity. Also, a 3D model of the cylindrical shell is constructed via Computer Software Technology (CST) program to carry out the analytical results. The analytical calculations and simulations are performed for TM mode excitation. A good agreement is obtained by the comparison of analytical results and CST simulations.

___

  • Abdelal, N. (2018). Electromagnetic interference shielding of stitched carbon fiber composites. Journal of Industrial Textiles : 1–18. doi:10.1177/1528083718798632.
  • Abramowitz, M., and Stegun, I. A. (2003) Handbook of Mathematical Functions. New York: Dover.
  • Aziz, M. A., Cordill, B. D., Seguin, S. A., Ewing, M. S., Mamaril, B., Phillips, J., Pendse, V. (2012). Shielding effectiveness of composite aircraft: A reverberation chamber and virtual measurement study. 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, Proceedings : 2775–2779. doi:10.1109/I2MTC.2012.6229472.
  • Bogorad, A. L., Deeter, M. P., August, K. A., Doorley, G., Likar, J. J., Herschitz, R. (2008). Shielding Effectiveness and Closeout Methods for Composite Spacecraft Structural Panels. IEEE Transactions on Electromagnetic Compatibility 50(3): 547–555.
  • Bui, V. P., Thitsartarn, W., Liu, E. X., Chuan, J. Y. C., Chua, E. K. (2015). EM Performance of Conductive Composite Laminate Made of Nanostructured Materials for Aerospace Application. IEEE Transactions on Electromagnetic Compatibility 57(5): 1139–1148.
  • Cabello, M. R., Fernandez, S., Pous, M., Pascual-Gil, E., Angulo, L. D., Lopez, P., Pere J. Riu, P.J., Guadalupe G. Gutierrez, G.G., Mateos, D., Poyatos, D., Fernandez, M., Alvarez, J., Pantoja, M.F., An˜on´, M., Silva, F., Bretones, A.R., Trallero, R., Luis Nuno˜, L., Escot, D., Martin, R.G., Garcia, S.G. (2017). SIVA UAV: A Case Study for the EMC Analysis of Composite Air Vehicles. IEEE Transactions on Electromagnetic Compatibility 59(4): 1103–1113.
  • Celozzi, S., Araneo, R., Lovat, G. (2008). Electromagnetic Shielding. Electromagnetic Shielding. doi:10.1002/9780470268483.
  • Cheng-Nan Chiu, Chun Hsiung Chen (1995). Plane-wave shielding properties of anisotropic laminated composite cylindrical shells. IEEE Transactions on Electromagnetic Compatibility 37(1): 109–113.
  • Chiu, C.-N., Hsu, C.-I. G. (2005). Scattering and Shielding Properties of a Chiral-Coated Fiber-Reinforced Plastic Composite Cylinder. IEEE Transactions on Electromagnetic Compatibility 47(1): 123–130.
  • Computer Simulation Technology (2019). CST Studio Suite 2015, User Guide,CST. Darmstadt, Germany Accessed: .
  • Cordill, B. D., Seguin, S. A., Ewing, M. S. (2011). Shielding effectiveness of composite and aluminum aircraft, model and measurement comparison. Conference Record - IEEE Instrumentation and Measurement Technology Conference : 1408–1413. doi:10.1109/IMTC.2011.5944141.
  • De Rosa, I. M., Mancinelli, R., Sarasini, F., Sarto, M. S., Tamburrano, A. (2009). Electromagnetic Design and Realization of Innovative Fiber-Reinforced Broad-Band Absorbing Screens. IEEE Transactions on Electromagnetic Compatibility 51(3): 700–707.
  • Evans, R. W. (1997). Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials. NASA Contractor Report (4784).
  • Greco, S., Tamburrano, A., D’Aloia, A., Mufatti, R., Sarto, M. S. (2012). Shielding effectiveness properties of carbon-fiber reinforced composite for HIRF applications. IEEE International Symposium on Electromagnetic Compatibility : 1–6. doi:10.1109/EMCEurope.2012.6396702.
  • Gutiérrez, G. G., Alvarez, J., Pascual-Gil, E., Bandinelli, M., Guidi, R., Martorelli, V., Pantoja, M. F., Cabello, M. R., Garcia, S. G. (2014). HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method. IEEE Transactions on Electromagnetic Compatibility 56(4): 854–863.
  • Hsu, C. I. G., Chiu, C. N. (2006). Oblique plane-wave scattering from a general bi-isotropic cylindrical shell with an interior advanced composite-material backing. IEEE Transactions on Electromagnetic Compatibility 48(4): 614–620.
  • Huang, L., Gao, C., Guo, F., Sun, C. (2017). Lightning Indirect Effects on Helicopter: Numerical Simulation and Experiment Validation. IEEE Transactions on Electromagnetic Compatibility 59(4): 1171–1179.
  • Jazzar, A., Clavel, E., Meunier, G., Vialardi, E. (2014). Study of lightning effects on aircraft with predominately composite structures. IEEE Transactions on Electromagnetic Compatibility 56(3): 675–682.
  • Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S., Long, A. (2019). Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Composites Part B: Engineering 173(December 2018): 106906.
  • Nunes, R. R., Schuur, J. (2015). Investigation on the propagation and coupling in aircraft using absorbing films. IEEE International Symposium on Electromagnetic Compatibility 2015-Septm: 322–327.
  • Perala, R. A., Elliot, J. R., Curry, J. D. (1991). The Effects of Simulated Electromagnetic Pulse on Commercial Aircraft. IEEE Transactions on Electromagnetic Compatibility 33(2): 120–131.
  • Renaud, P. R., Laurin, J. J. (1999). Shielding and scattering analysis of lossy cylindrical shells using an extended multifilament current approach. IEEE Transactions on Electromagnetic Compatibility 41(4 PART 1): 320–334.
  • Tesche, F. M., Ianoz, M., Karlsson, T. (1997). EMC Analysis Methods and Computational Models. Canada: John Wiley & Sons.
  • Vogel, M. H. (2014). Impact of lightning and high-intensity radiated fields on cables in aircraft. IEEE Electromagnetic Compatibility Magazine 3(2): 56–61.
  • Wang, K., Laurin, J.-J., Wu, K. (2019). Scattering and Shielding Analyses of Carbon Fiber Composites-Based Cylindrical Shells Using a Multifilament Doublet Current Method. IEEE Transactions on Electromagnetic Compatibility 61(4): 1015–1024.