Farklı Habitatların Eklembacaklı Komüniteleri Açısından Değerlendirilmesi: Pinus nigra Arnold. (Karaçam) ve Prunus dulcis L. (Badem) Vejetasyonları

Bu çalışmada, habitat yapısı farklılıklarının eklembacaklı komünite yapısı üzerindeki etkilerinin tespit edilmesi amaçlanmıştır. Bu amaçla, karaçam ve bademlik habitatlar arasındaki farklılıklar mikrohabitat yapısı ve eklembacaklı komünite yapısı açısından incelenmiş, habitat ve eklembacaklılar arasındaki bağlantı değerlendirilmiştir. Burdur İli yakınlarında seçilen söz konusu habitatlarda Nisan ve Mayıs 2012 tarihlerinde örnekleme çalışmaları gerçekleştirilmiştir. Eklembacaklı örneklemeleri, aralarında 5 m mesafe bulunan 4x4’lik 16 adet gömme tuzaklarla yapılmıştır. Mikrohabitat değişkenlerini tespit etmek amacıyla her tuzak noktasının merkezinde ve çevresindeki 9 noktada vejetasyon ve toprak üstü tabakası özellikleri kaydedilmiştir. Eklembacaklı taksonlarının bolluğu ve mikrobitat değişkenleri arasındaki ilişki korelasyon analizi ile değerlendirilmiştir. Yapılan değerlendirmeler, bademlik habitattaki eklembacaklı tür zenginliğinin karaçam habitatına göre oldukça yüksek olduğunu göstermektedir. Eklembacaklı komünitesindeki temel farklılığa neden olan mikrohabitat değişkenleri taç, ot ve ibre örtüşüdür. Taç tabakasının örtüşünün düşük olması bademlik habitatın tabakalılığını ve kompleksliğini arttırmış, bu mikrohabitat özellikleri bademlik habitatı eklembacaklı taksonları açısından daha çekici hale getirmiştir. Sonuç olarak karaçam ve bademlik habitatların eklembacaklı komünitesi açısından büyük oranda farklılık gösterdiği ve bu farklılıkların habitat yapısındaki farklılıktan kaynaklandığı tespit edilmiştir.

Evaluation of Different Habitats with regard to Arthropod Communities: Vegetations of Black Pine (Pinus nigra Arnold) and Almond (Prunus dulcis Mill.)

In this study, it was aimed to determine effects of differences in habitat structure on arthropod community structure. For this purpose, differences in black pine (Pinus nigra Arnold) and almond (Prunus dulcis ) habitats were analyzed in terms of microhabitat structure and arthropod community structure, and relationship between the habitats and arthropods was presented. Samplings were carried out in habitats chosen near Burdur province during April and May of 2012. Arthropoda samplings were performed by using 16 pitfall-traps that were placed with 5 m intervals in 4x4 grids. To determine microhabitat variables, features of vegetation and surface layer were recorded in 9 points in center and around of each traps. Relationship between abundance of arthropod taxa and microhabitat variables were evaluated with correlation analysis. Evaluations displayed that species richness of arthropods in almond habitat was higher than black pine habitat. Microhabitat variables caused differences in arthropod communities between habitats were found as cover of canopy, grass and needle. The lower canopy cover increased stratification and complexity of almond habitat and these microhabitat features made this habitat more attractive for arthropod communities. As a result, it was determined that black pine and almond habitats showed substantially differences in terms of arthropod communities and these differences were due to habitat structure.

___

  • Abbott, I., T. Burbidge, K. Strehlow, A. Mellican, Wills, A. (2003). Logging and burning impacts on cockroaches, crickets and grasshoppers, and spiders in Jarrah forest, Western Australia. Forest Ecology and Management 174: 383-399.
  • Andersen, E. (2003). Effects of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26: 87-97.
  • Andersen, A.N., Müller, W.J. (2000). Arthropod responses to experimental fire regimes in an Australian tropical savannah: ordinal-level analysis. Austral Ecology 25: 199-209.
  • Brown, V.K., Southwood, T. R. E. (1987). Secondary Succession, Patterns and Strategies. In: Colonisation, Succession and Stability. Gray, A.J., Crawley, M.J., Edwards, P.J. (eds.), Blackwell Scientific Publications, Oxford, 315-338.
  • Buse, A. (1988). Habitat selection and grouping of beetles (Coleoptera). Holarctic Ecology 11: 241-247.
  • Cobb, T.P., Langor, D.W., Spence, J.R. (2007). Biodiversity and multiple disturbances: boreal forest ground beetle (Coleoptera: Carabidae) responses to wildfire, harvesting, and herbicide. Canadian Journal of Forest Research 37:1310-1323.
  • Dennis, P., Aspinall, R.J., Gordon, I.J. (2002). Spatial distribution of upland beetles in relation to landform, vegetation and grazing management. Basic and Applied Ecology 3: 183-193.
  • Dufrey, E. (1962). A population study of spiders in limestone grassland, the field-layer fauna. Oikos 13: 15–34.
  • Floren, A., Linsenmair, K.E. (2001). The influence of arthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecology 153: 153-167.
  • Gardner, S.M., Cabido, M.R., Valladares, G.R., Diaz, S. (1995). The influence of habitat structure on arthropod diversity in Argentine semi-arid Chaco forest. Journal of Vegetation Science 6: 349-356.
  • Halaj, J., Ross, D.W., Moldenke, A.R. (2000). Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90(1): 139-152.
  • Hoffmann, B.D. (2003). Responses of ant communities of experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Australian Ecology 28: 182-195.
  • Kaynaş, B.Y., Gurkan B. (2008). Species richness and abundance of insects during post-fire succession of a Pinus brutia forest in Mediterranean region. Polish Journal of Ecology 56 (1): 165-172.
  • Lassau, S. A., Hochuli, D.F., Cassis, G., Reid, C.A.M. (2005). Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Diversity and Distributions 11: 73–82.
  • Latty, E.F., Werner, S.M., Mladenoff, D.J., Raffa, K.F., Sickley, T.A. (2006). Response of ground beetle (Carabidae) assemblages to logging history in northern hardwood-hemlock forests. Forest Ecology and Management 222: 335-347.
  • Lawton, J.H. (1987). Are there assembly rules for successional communities. In: Colonisation, succession and stability. Gray, A.J., Crawley, M.J., Edwards, P.J. (eds.), Blackwell Scientific Publications, Oxford, 225-244.
  • Lawton, J.H. (1983). Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28: 23-39.
  • Lubertazzi, D., Tschinkel, W.R. (2003). Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods. Journal of Insect Science 3(21): 1-17.
  • Magagula, C.N. (2003). Changes in Carabid beetle diversity within a fragmented agricultural landscape. African Journal of Ecololgy 41: 23-30.
  • Martin, K., Sommer, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography 31(4):531-545.
  • Oxbrough, A., Irwin, S., Kelly, T.C., O’Halloran, J. (2010). Ground-dwelling invertebrates in reforested conifer plantations. Forest Ecology and Management 259: 2111-2121.
  • Powers, L.E., Ho, M., Freckman, D.W., Virginia, R.A. (1998). Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic and Alpine Research 30(2): 133-141.
  • Rosenweig, M.L. (1995). Species Diversity In Space and Time. Cambridge University Press, Cambridge, 436 pp.
  • Siemann, E. (1998). Experimental tests of effects of plant reproductivity and diversity on grassland arthropod diversity. Ecology 79(6): 2057-2070.
  • Siemann, E., Haarstad, J., Tilman, D. (1999). Dynamics of plant and arthropod diversity during old field succession. Ecography 22(4): 406–414.
  • Southwood, T.R.E., Brown, V.K., Reader, P.M. (1979). The relationships of plant and insect diversities in succession. Biological Journal of the Linnean Society 12: 327-348.
  • Teresa Pardo, M., Esteve, M. A., Giménez, A., Martínez-Fernández, J., Carreño, M.F., Serrano, J., Miñano, J. (2008). Assessment of hydrological alterations on wandering beetle assemblages (coleoptera: Carabidae and Tenebrionidae) in coastal wetlands of arid Mediterranean systems. Journal of Arid Environment 72: 1803–1810.
  • Tilman, D. (1986). A consumer-resource approach to community structure. American Zoologist 26: 5-22.
  • Verschoor, B.C., Krebs, B.P.M. (1995). Diversity changes in a plant and carabid community during early succession in an embanked saltmarsh area. Pedobiologia 39: 405–416.
  • Werner, S.M., Raffa, K.F. (2000). Effects of forest management practices on the diversity of ground-occuring beetles in mixed northern hardwood forests of the Great Lakes Region. Forests Ecology and Management 139: 135-155.
  • Witteveen, J. (1988). The impact of the salinity of soil-water and food on the physiology, behaviour and ecology of salt-marsh Collembola. Functional Ecology 2: 49-55.
  • Yanoviak, S.P., Kaspari, M. (2000). Community structure and habitat template: ants in the tropical forest canopy and litter. Oikos 89: 259-266.
  • York, A. (1999). Long-term effects of frequent low-intensity burning on the abundance of litter-dwelling invertebrates in coastal blackbutt forests of southeastern Australia. Journal of Insect Conservation 3: 191-199.
  • Ziesche, T.M., Roth, M. (2008). Influence of environmetal parameters on small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? Forest Ecology and Management 255: 738-752.