Endocannabinoid Systetm: Neuropharmacological Implications

Marijuana or cannabis has been part of humanity's medicine chest for almost as long as history has been recorded. Cannabinoids are a class of diverse chemical compounds isolated from cannabis that act on cannabinoid receptors (CB1 & CB2). The ligands for these receptor proteins include the endocannabinoids (produced naturally in the body by humans and animals), the phytocannabinoids (found in cannabis and some other plants) and synthetic cannabinoids (manufactured artificially). The endogenous cannabinoid system, named after the plant that led to its discovery, is perhaps the most important physiologic system involved in establishing and maintaining human health. The human body's neurological, circulatory, endocrine, digestive and musculoskeletal systems have now all been shown to possess cannabinoid receptor sites. Indeed, even cartilage tissue has cannabinoid receptors, which makes cannabis a prime therapeutic agent to treat various complicated ailments. In each tissue, the cannabinoid system performs different tasks, but the goal is always the same: homeostasis, the maintenance of a stable internal environment despite fluctuations in the external environment. The endocannabinoid system, with its presence in almost all organs especially in CNS makes it a bridge between body and mind. By understanding this system we begin to see a mechanism that explains how states of consciousness can promote health and sense of well being. Nausea, vomiting, stimulation of appetite, symptomatic relief of cancer pain and/or management of neuropathic pain, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, hepatic, renal, intestinal and cardiovascular disorders are the various diverse areas where cannabinoids have shown their therapeutic presence and potential. In present work cannabinoids are presented as a viable therapeutic target in CNS disorders that include Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, Parkinson's and Huntington's disease.

___

2. Amar MB. Pschodysleptic Drugs: Cannabis and Hallucinogens, University of Montreal, 2001

2. Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389--462.

3. Li HL. An archeological and historical account of cannabis in China. Econ Bot. 1974;28:437--48.

4. Aggarwal SK, Carter GT, Sullivan MD, ZumBrunnen C, Morrill R, Mayer JD. Medicinal use of cannabis in the United States: historical perspectives, current trends, and future directions. Opioid Manag. 2009;5(3):153--68.

5. Wood TB, Spivey WTN, Easterfield TH. Charas, the resin of Indian hemp. Chem Soc. 1896;69:539--46

6. Th. Geschwinde, Rauschdrogen: Marktformen und Wirkungsweisen, 3rd edition, Springer Verlag, Berlin, 1996.

7. Grotenhermen F, Muller--Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int. 2012; 109(29--30):495--501.

8. Grotenhermen F. Cannabinoids and the Endocannabinoid System. Cannabinoids. 2006;1(1):10--4.

9. Marzo DV, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. l998;2l(l2):52l--8.

10. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605-13.

ll.Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner Tl. Structure of cannabinoid receptor and functional expression of the cloned cDNA. Nature. l990;346(6284):561--4.

l2. Munro S, Thomas KL, Abu--Shaar M. Molecular characterization of peripheral receptor for cannabinoids. Nature. l993;365(644l):6l-5.

l3.Begg M, Pacher P, Batkai S, Hyiaman OD, Offertaler L, MoFM, Liu J, Kunos G. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106(2):l33--45.

l4. Gomez--Ruiz M, Hernandez M, de Miguel R, Ramos JA. An overview on the biochemistry of the cannabinoid system. Mol Neurobiol. 2007;36(l):3--14.

15.Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296(5568):678--82.

16. Silvestri C, Marzo DV. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;l7(4):475 --90.

17. Tucci SA, Halford C, Harrold A, Kirkham TC. Therapeutic potential of targeting the endocannabinoids: implications for the treatment of obesity, metabolic syndrome, drug abuse and smoking cessation. Curr Med Chem. 2006;l3(22):2669--80.

18. Ruiz JF, Berrendero F, Hernandez ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci. 2000;23(l):l4--20.

19. Clerc FT, Julien B, Grenard P, Nhieu JTV, DeveauXV, Hezode C, Mallat A, Lotersztajn S. The endocannabinoid system as novel target for the treatment of liver fibrosis. Pathol Biol. 2008;56(l):36--8.

20. Gutierrez MS, Bueno GB, Zoppi S, Leza JC, Manzanares J. Chronic blockade of cannabinoid CB2 receptors induces anxiolytic like actions associated with alterations in GABA(A) receptors. Br Pharmacol. 2012;165(4):951--64.

21. Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR,Yang HJ, Bi GH, Li J, Gardner EL. Brain cannabinoid CB(2) receptors modulate cocaine's actions in mice. Nat Neurosci. 20ll;l4(9):ll60--6.

22. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CBl and CB2. Pharmacol Rev. 2010;62(4):588--63l.

23. Cabral GA, Griffin--Thomas L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. EXpert Rev Mol Med. 2009;1 l:e3.. dai: 0. 5455/medscience.2015. 04. 8340

Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Liu QR, Chirwa SS, Hope B,

Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR. Functional expression of brain neuronal CB cannabinoid receptors are involved in the effects of drugs of abuse and in depression. Ann Acad Sci. 2008;1139:434-49.

Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamine:new concepts for signaling. Trends Biochem Sci. 2010;35(11):601--8.

Dalton GD, Bass CE, Van Horn CG, Howlett AC. Signal transduction via cannabinoid receptors. CNS Neurol Disord Drug Targets. 2009;8(6):422--3l.

Kuehnle J, Mendelson H, Davis KR, New PF. Computed tomographic examination of heavy marijuana smokers. JAMA. l977;237(l2):l23l-2.

Struve FA, Straumanis JJ. Electroencephalographic and evoked potential methods in human marijuana research: Historical review and future trends. Drug Development Research. 1990;20:369--88.

Carter WE, Coggins, Doughty PL. Cannabis in Costa Rica: study of chronic marijuana use, Philadelphia, Institute for the Study of Human Issues, 1980.

Fehr KO, Kalant H. Long--term effects of cannabis on cerebral function: review of the clinical and experimental literature. In: Fehr KO, Kalant H, eds, Cannabis and Health Hazards. Toronto, Addiction Research Foundation.l983;501--76.

Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO. CannabidiolzRecent advances. Chem Biodivers. 2007;4:1678-92.

Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002;54(2): 161--202.

Bouaboula MS, Hilairet J, Marchand Fajas L, Le Fur G, Casellas P. Anandamide induced PPARg transcriptional activation and 3T3--Ll preadipocyte differentiation. Eur Pharmacol. 2005;517(3):l74--8l.

Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Marzo DV, Julius D, Hogestatt ED. Nature. l999;400(6743):452--7.

Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389--462.

McKinney MK, Cravatt BF. Structure and function of fatty acid amidehydrolase. Annu Rev Biochem. 2005;74:411-32.

Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA. 2002;99:10819-24.

Dewey WL. Cannabinoid pharmacology. Pharmacol Rev. 1986;38:151--78.

Baker D, Pryce G, Giovannoni G, Thompson AJ. The therapeutic potential of cannabis. Lancet Neurol. 2003;2(5):29l--8.

40. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: review. JAMA. 2014;3l l(l6):l670--83.

41. Thomas B. Parkinson's disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal. 2009;ll(9):2077--82.

42. Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet. 2014;384(9942):545--55.

43. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: quantitative in vitro autoradiographic study. Neurosci. l99l;l l(2):563--83.

44. Marzo DV, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with reduction in movement in an animal model of Parkinson's disease. FASEB J. 2000;14(10):1432--8.

45. Muller--Vahl KR, Kolbe H, Schneider U, Emrich HlVI. Cannabis in Movement Disorders. Forsch Komplementarmed. l999;6 Suppl 3:23--7.

46. Martin AB, Femandez--Espejo E, Ferrer B, Gorriti MA, Bilbao A, Navarro M. Expression and function of CBl receptor in the rat striatum:localization and effects on Dl and D2 dopamine receptor--mediated motor behaviors. Neuropsychopharmacology. 2008;33(7):l667--79.

47. Heumann R, Moratalla R, Herrero MT, Chakrabarty K, Drucker--Colin R,Garcia-- Montes JR. Dyskinesia in Parkinson's disease: mechanisms and current non-- pharmacological interventions. Neurochem. 2014;130:472--89.

48. Price DA, Owens WA, Gould GG, Frazer A, Roberts JL, Daws LC, Giuffrida A. CB independent inhibition of dopamine transporter activity by cannabinoids in mouse dorsal striatum. Neurochem. 2007;101(2):389--96.

49. Aparicio GR, Moratalla R. Oleoylethanolamide reduces L--DOPA--induced dyskinesia via TRPVl receptor in mouse model of Parkinson disease. Neurobiol Dis. 2014;62:416--25.

50. Kamat PK, Kalani A, Kyles P, Tyagi SC, Tyagi N. Autophagy of Mitochondria:A Promising Therapeutic Target for Neurodegenerative Disease. Cell Biochem Biophys. 2014;70(2):707--l9.

51. Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Delta9-- tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci A. l998;95(l4):8268--73.

52. Fernandez RJ, Moreno MM, Rodriguez CC. Prospects for cannabinoid therapies in basal ganglia disorders. Br Pharmacol. 2011;163(7):l365--78.

53. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Gao F, Coppola G, Geschwind D, Vogel Z. Micro array and pathway analysis reveal distinct mechanisms underlying cannabinoid mediated modulation of LPS--induced activation of BV--2 microglial cells. PLoS One. 2013;8(4):e6l462.

54. Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R, Coppola G, Geschwind D, Vogel Z. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Delta9--tetrahydrocannabinol in BV--2 microglial cells. Br Pharmacol. 2012;165(8):2512--28.

55.Musty RE, Consroe PP. Spastic disorders. In: GrotenhermenF, Russo E, editors. Cannabis and cannabinoids. Pharmacol--ogy, toxicology, and therapeutic potential. Binghamton (NY): Haworth Press. 2002;195-204.

56. More SV, Choi KD. Promising cannabinoid--based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener. 2015; 10:17.

57. Aso E, Ferrer I. Cannabinoids for treatment of Alzheimer's disease: moving Toward the clinic. Front Pharmacol. 2014;5237.

58. Benito C, Tolon RM, Pazos MR, Nunez E, Castillo AI, Romero J. Cannabinoid CB2 receptors in human brain inflammation. Br Pharmacol. 2008;153(2):277--85.

59. Giacoppo S, Mandolino G, Galuppo M, Bramanti P, Mazzon E. Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules. 2014;l9(ll)21878l--816.

60. Eubanks LM, Claude JR, Albert EB, Koobs GF, Olson AJ, Dickerson TJ, Janda KD. molecular link between the active component of marijuana and Alzheimer's disease pathology. Mol Pharm. 2006;3(6):773--7.

6l. Marchalant Y, Rosi S, Wenk G. Anti--inflammatory property of the cannabinoid agonist WIN-552l2--2 in rodent model of chronic brain inflammation. Neuroscience. 2007; 144(4)215 16--22.

62. Esposito G, Scuderi C, Savani C. Cannabidiol in vivo blunts beta--amyloid induced neuroinflammation by suppressing IL--lB and iNOS expression. Br Pharmacol. 2007;151(8):l272--9.

63. Scuderi C, Steardo L, Esposito G. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSYSYAPP+ cells through PPAR gamma involvement. Phytother Res. 2014;28(7):1007--l3.

64. Amtmann D, Weydt P, Johnson KL, Jensen MP, Carter GT. Survey of cannabis use in patients with amyolotrophic lateral sclerosis. Am Hosp Palliat Care. 2004;2l(2):95-- 104.

65. Bilsland LG, Dick TRJ, Pryce G, Petrosina S, Marzo VD, Baker Green smith L. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SODl mice. FASEB J. 2006;20(7):1003--5.

66. Carter GT, Abood ME, Aggarwal SK, Weiss MD. Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and call for clinical trials. Am Hosp Palliat Care. 2010;27(5):347--56.

67. Martet MM, Porras EF. Changes in endocannabinoid receptors and enzymes in the spinal cord of SODl(G93A) transgenic mice and evaluation of Sativex((R)) --like combination of phytocannabinoids: Interest for future therapies in amyolotrophic lateral sclerosis. CNS Neurosci Ther. 2014;20(9):809--15.

68. Saundra Y, CNN.com. August 7, 2013. Marijuana stops child's severe seizures.

69. Porter BE, Jacobson C. Report of parent survey of cannabidiol--enriched cannabis use in pediatric treatment--resistant epilepsy. Epilepsy Behav. 2013;29(3):574--7.

70. Susan L, New Jersey Star-Ledger. FDA-approved medical marijuana clinical trial gets underway next month for kids with epilepsy. December 6, 2013.

7l.Ryan D, Alison D, Lafourcade C, Roger GP, Bettina P. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. Neurosci. 2009;29(7):2053--63.

72. Ma YL, Weston SE, Whalley BJ, Stephens GJ. The phytocannabinoid Delta(9)-- tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum. Br Pharmacol. 2008;154(l):204--15.

73. Pertwee RG. The diverse CB and CB receptor pharmacology of three plant cannabinoids:delta9--tetrahydrocannabinol, cannabidiol and delta9-- tetrahydrocannabivarin. Br Pharmacol. 2008;153(2):l99--215.

74. Turkanis SA, Karler R. Influence of anticonvulsant cannabinoids on post tetanic potentiation of isolated Bullfrog ganglia. Life Sci. l975;l7(4):569--78.

75. Walker FO. Huntington's disease. Lancet. 2007;369(9557):2l8--28.

76. Kumar P, Kalonia H, Kumar A. Huntington's disease: Pathogenesis to animal models. Pharmacol Rep. 2010;62(l):l--l4.

77. Consroe P, Laguna J, Allender J, Snider S, Stern L, Sandyk R. Controlled clinical trial of cannabidiol in Huntington's Disease. Pharmacol Biochem Behav. l99l;40(3):701--8.

78. Sagredo O, Pazos RM, Sara V, Javier FR. Cannabinoids: Novel Medicines for the Treatment of Huntington's Disease. Recent Pat CNS Drug Discov. 2012;7(1):4l--8.

79. Sagredo O, Pazos RM, Ramos JA, Roger GP, Javier FR. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease. Neurosci Res. 2011;89(9)21509--18.

80. Sagredo O, Gonzalez S, Aroyo I. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: Relevance for Huntington's disease. Glia. 2009;57(ll)21154--67.

81. Bloom CJ, Wolfson T, Gamst A, Jin S, Marcotte TD, Bentley H, Gouaux B. Smoked cannabis for spasticity in multiple sclerosis: randomized, placebo-controlled trial. CMAJ.2012;184(10):1143--50.

82. Killestein J, Erwin H, Marcus R. Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. Neuroimmunol. 2003;137(l--2):l40--3.

83. Hazekamp A, Franjo G, Kurt B. Review on clinical studies With cannabis and cannabinoids 2005--2009. Cannabinoids. 2010;521--21

84. Molina H, Vela, E, Martin AA. Cannabinoids promote oligodendrocyte progenitor survival: Involvement of cannabinoidreceptors and phosphatidylinositol--3 kinase/Akt signaling. Neurosci. 2002;22(22):9742--53.

85. Cabral GA, Harmon KN, Carlisle, SJ. Cannabinoid--mediated inhibition of inducible nitric oxide production by rat microglial cells: Evidence for CBl receptor participation. Adv Exp Med Biol. 2001;493:207--14.

86. KleinTW, Lane B, Newton CA, Friedman H. The cannabinoid system and cytokine network. Proc Soc Exp Biol Med. 2000;225(l):l--8.

87. Guzman M, Sanchez C, Galve--Roperh I. Control of the cell survival/death decision by cannabinoids. Mol Med (Berl). 2001;78(ll):613--25.

88. Maccarrone M, Agro FA. The endocannabinoid system, anandamide and the regulation of mammalian cell apoptosis. Cell Death Differ. 2003;10(9):946--55.

89. Petrocellis DL, Melck D, Bisogno T, Marzo DV. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem Phys Lipids. 2000;108(l-- 2):l9l--209.

90. Grundy RI, Rabuffeti M, Beltramo M.Cannabinoids and neuroprotection. Mol Neurobiol. 2001 ;24(l--3):29--51.

91. Guzman M, Sénchez C. Effects of cannabinoids on energy metabolism. Life Sci. l999;65(6--7):657--64.
Medicine Science-Cover
  • ISSN: 2147-0634
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Effect Publishing Agency ( EPA )