On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces

On Ordered Hyperspace Topologies in the Setting of Cech Closure Ordered Spaces

In this work, we introduce some possible ordered hyperspace topologies on families of subsets constructedin the setting of a Cech closure operator.

___

  • [1] Mashhour, A.S. and Ghanim, M.H., On closure spaces. Indian J.pure appl. Math. 14(1983), no.6, 680-691.
  • [2] Peleg, B., Utility functions for partially ordered topological spaces. Econometrica 38 (1970), 93-96.
  • [3] Andrijevi´c, D., Jeli´c, M. and Mrševi´c, M., Some properties of Hyperspaces of Cech closure spaces with Vietoris- ˇ like Topologies. Filomat 24 (2010), 53-61.
  • [4] Akin, E., The general topology of dynamical systems. Providence: Amer. Math. Soc., 1993.
  • [5] Burgess, D.C.J. and McCartan, S. D., Order-continuous functions and order-connected spaces. Proc. Camb. Phill. Soc. 68 (1970), 27-31.
  • [6] Cech, E., Topological spaces. Czechoslovak Acad. of Sciences, Prague, 1966. ˇ
  • [7] Michael, E., Topologies on spaces of subsets. Trans. Amer. Math.Soc. 71 (1951), 152-183.
  • [8] Beer, G., Topologies on Closed and Closed Convex Sets. Mathematics and its Application, 268, Kluwer Academic Publisher, Dordrecht, 1993.
  • [9] Gierz, G., HofmannK. H., Keimel, K., Lawson, J.D., Mislove, M. W. and Scott, D.S., Continuous Lattices and Domains. Cambridge University Press, 2003.
  • [10] Priestly, H. A. and Davey, B. A., Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.
  • [11] Eroglu, I. and Guner, E., Separation axioms in Cech closure ordered spaces. ˇ Commun. Fac. Sci. Univ. Ank. Ser A1 Math. Stat. 65 (2016), no.2, 1-10.
  • [12] Slapal, J., A digital anologue of the Jordan Curve theorem. Discrete Applied Mathematics 139 (2004), 231-251.
  • [13] Chandrasekhara Rao, K., Gowri, R. and Swaminathan, V., Cech Closure Space in Structural Configuration of ˇ Proteins. Advanced Studies in Biology 1 (2009), no.2, 95-104.
  • [14] Nachbin, L., Topology and order. Van Nonstrand Mathematical Studies 4, Princeton, N. J., 1965.
  • [15] Mrševi´c, M. and Andrijevi´c, D., On θ-connectedness and θ-closure spaces. Topology and its Application 123 (2002), 157-166.
  • [16] Mrševi´c, M., Proper and admissible topologies in closure spaces. Indian J. Pure Appl. Math. 36 (2005), 613-627.
  • [17] Mrševi´c, M. and Jeli´c, M., Selection principles in Hyperspaces with generalized Vietoris topologies. Topology and its Applications 156 (2008), 124-129.
  • [18] Evren, Ö. and Ok, E.A., On the muti-utility representation of preference relations. Journal of Mathematical Economics 47 (2011), 554-563.
  • [19] Bade, S., Nash equilibrium in games with incomplete preferences. Economic theory 26 (2005), 309-332.
  • [20] McCartan, S. D., Separation axioms for topological ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 965-973.
  • [21] McCartan, S. D., A quotient ordered spaces. Proc. Camb. Phill. Soc. 64 (1968), 317-322.
  • [22] McCartan, S. D., Bicontinuous preordered topological spaces. Pasific J. Math. 38 (1971), 523-529.
  • [23] Choe, T. H. and Park, Y. S., Embedding Ordered topological spaces into topological semilattices. Semigroup Forum 17 (1979), 188-199.
  • [24] Thron, W. J., What results are Valid on Closure Spaces. Topology Proceedings 6 (1981), 135-158.
  • [25] Park, Y. S. and W.T. Park, On Ordered Hyperspaces. J. Korean Math. Soc. 19 (1982), no. 1, 11-17.