Global Solution and Blow-up for a Thermoelastic System of $p$-Laplacian Type with Logarithmic Source

Global Solution and Blow-up for a Thermoelastic System of $p$-Laplacian Type with Logarithmic Source

This manuscript deals with global solution, polynomial stability and blow-up behavior at a finite time for the nonlinear system $$ \left\{ \begin{array}{rcl} & u'' - \Delta_{p} u + \theta + \alpha u' = \left\vert u\right\vert ^{p-2}u\ln \left\vert u\right\vert \\ &\theta' - \Delta \theta = u' \end{array} \right. $$ where $\Delta_{p}$ is the nonlinear $p$-Laplacian operator, $ 2 \leq p < \infty$. Taking into account that the initial data is in a suitable stability set created from the Nehari manifold, the global solution is constructed by means of the Faedo-Galerkin approximations. Polynomial decay is proven for a subcritical level of initial energy. The blow-up behavior is shown on an instability set with negative energy values.

___

  • [1] Dafermos, C. M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29, 241-271 (1968).
  • [2] Chen, W.: Cauchy problem for thermoelastic plate equations with different damping mechanisms. Commun. Math. Sci. 18, 429-457 (2020).
  • [3] Fareh, A., Messaoudi, S. A.: Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy. Appl. Math. Comput. 293, 493-507 (2017).
  • [4] Feng, B.: On a thermoelastic laminated Timoshenko beam: well posedness and stability. Complexity 2020, 5139419 (2020).
  • [5] Kafini, M., Messaoudi, S. A., Mustafa, M. I.: Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay. J. Math. Phys. 54, 101503 (2013).
  • [6] Lasiecka, I., Pokojovy, M., Wan, X.: Global existence and exponential stability for a nonlinear thermoelastic Kirchhoff- Love plate. Nonlinear Anal. RealWorld Appl. 38, 184-221 (2017).
  • [7] Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179-231 (1999).
  • [8] Nonato, C., Raposo, C. A., Feng, B.: Exponential stability for a thermoelastic laminated beam with nonlinear weights and time-varying delay. Asymptot. Anal. 2021, 1-29 (2021).
  • [9] Racke, R., Ueda, Y.: Nonlinear thermoelastic plate equations - global existence and decay rates for the Cauchy problem. Journal of Differential Equations 263, 8138-8177 (2017).
  • [10] Raposo, C. A., Villagran, O. P. V., Ferreira, J., Pi¸skin, E.: Rao-Nakra sandwich beam with second sound. Partial Differ. Equ. Appl. Math. 4, 100053 (2021).
  • [11] Rivera, J. M.: Energy decay rates in linear thermoelasticity. Funkcial. Ekvac. 35, 19-30 (1992).
  • [12] Lian,W., Xu, R.: Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 9, 613-632 (2020).
  • [13] Ha, T. G., Park, S. H.: Blow-up phenomena for a viscoelastic wave equation with strong damping and logarithmic nonlinearity. Adv. Differ. Equ. 2020, 235 (2020).
  • [14] Barrow, J. D., Parsons, P.: Inflationary models with logarithmic potentials. Phys. Rev. D. 52, 5576-5587 (1995).
  • [15] Enqvist, K., McDonald, J.: Q-balls and baryogenesis in the MSSM. Phys. Lett. 425, 309-321 (1998).
  • [16] Gorka, P.: Logarithmic Klein-Gordon equation. Acta Phys. Polon. B. 40, 59-66 (2009).
  • [17] Zloshchastiev, K. G.: Applications of wave equations with logarithmic nonlinearity in fluid mechanics. J. Phys. Conf. Ser. 1, 012-051 (2018).
  • [18] Dreher, M.: The wave equation for the p-Laplacian. Hokkaido Math. J. 36, 21-52 (2007).
  • [19] Greenberg, J. M., MacCamy, R. C., Vizel, V. J.: On the existence, uniqueness, and stability of solution of the equation $\sigma^{'}(u_{x})u_{xx} + \lambda u_{xtx} = \rho_{0} u_{tt}$ J. Math. Mech. 17, 707-728 (1968).
  • [20] Ang, D. D., Dinh, A. P. N.: Strong solutions of a quasilinear wave equation with nonlinear damping. SIAM J. Math. Anal. 19, 337-347 (1988).
  • [21] Benaissa, A., Mokeddem, S.: Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type. Math. Methods Appl. Sci. 30, 237-247 (2007).
  • [22] Biazutti, A. C.: On a nonlinear evolution equation and its applications. Nonlinear Anal. Theory Methods Appl. 24, 1221-1234 (1995).
  • [23] D’Ancona, P., Spagnolo, S.: On the life span of the analytic solutions to quasilinear weakly hyperbolic equations. Indiana Univ. Math. J. 40, 71-99 (1991).
  • [24] Ma, T. F., Soriano, J. A.: On weak solutions for an evolution equation with exponential nonlinearities. Nonlinear Analysis: Theory, Methods & Applications 37, 1029-1038 (1999).
  • [25] Pei, P., Rammaha, M. A., Toundykov, D.: Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources. J. Math. Phys. 56, 081503 (2015).
  • [26] Rammaha, M., Toundykov, D., Wilstein, Z.: Global existence and decay of energy for a nonlinear wave equation with p-Laplacian damping. Discrete Contin. Dyn. Syst. 32 4361-4390 (2012).
  • [27] Ye, Y.: Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations. Differential Equations and Nonlinear Mechanics. 2007, 19685 (2007).
  • [28] Chueshov, I., Lasiecka, I.: Existence, uniqueness of weak solution and global attactors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete Contin. Dyn. Syst. 15, 777-809 (2006).
  • [29] Gao, H., Ma, T. F.: Global solutions for a nonlinear wave equation with the p–Laplacian operator. Electronic Journal of Qualitative Theory of Differential Equations. 11, 1-13 (1999).
  • [30] Choi, H., Kim, H., Laforest, M.: Relaxation model for the -Laplacian problem with stiffness. J. Comput. Appl. Math. 344, 173-189 (2018).
  • [31] Li, Y.: Global boundedness of weak solution in an attraction–repulsion chemotaxis system with p-Laplacian diffusion. Nonlinear Analysis: RealWorld Applications. 51, 102933 (2020).
  • [32] Zhang, X., Liu, L., Wu, Y., Cui, Y.: Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term. Appl. Math. Lett. 74, 85-93 (2017).
  • [33] Kalleji, M. K.: Weighted Hardy–Sobolev inequality and global existence result of thermoelastic system on manifolds with corner-edge singularities. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7916
  • [34] Abdulla, U. G., Jeli, R.: Evolution of interfaces for the nonlinear parabolic p-Laplacian-type reaction-diffusion equations. II. Fast diffusion vs. absorption. European Journal of Applied Mathematics. 31, 385-406 (2020).
  • [35] Boudjeriou, T.: Stability of solutions for a parabolic problem involving fractional p-Laplacian with logarithmic nonlinearity. Mediterr. J. Math. 17 (2020). https://doi.org/10.1007/s00009-020-01584-6
  • [36] Raposo, C. A., Ribeiro, J. O., Cattai, A. P.: Global solution for a thermoelastic system with p-Laplacian. Appl. Math. Lett. 86, 119-125 (2018).
  • [37] Ding, H., Zhou, J.: Global existence and blow-up for a thermoelastic system with p-Laplacian. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1941906.
  • [38] Kim, J. U.: A boundary thin obstacle problem for a wave equation. Commun. Partial Differ. Equ. 14, 1011-1026 (1989).
  • [39] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier. Paris (1969).
  • [40] Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control, Optimisation and Calculus of Variations. 4, 419-444 (1999).
  • [41] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = ?Au + F(u). Trans. Amer. Math. Soc. 192, 1–21 (1974).
  • [42] Qin, Y., Rivera, J. M.: Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity. J. Math. Anal. Appl. 292, 160–193 (2004).
  • [43] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics. 22, 273-303 (1975).
  • [44] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. Journal of Functional Analysis. 14, 349-381 (1973).
  • [45] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications. Birkhöuser Boston Inc. Boston (1996).