Stearik Asit/Grafen oksit Esaslı Form-Kararlı Kompozit Faz Değişim Malzemelerinin Hazırlanması

Stearik asit-grafen oksit kompozit faz değişim malzemeleri (PCM) tiyol-alkin klik kapanma reaksiyonu ile hazırlandı. Öncelikle stearik asit tiyol-yne klik gruplarının bağlanması amacıyla modifiye edildi. Farklı miktarlarda grafen oksit tiyol-klik formülasyonuna eklendi. PCM’lerin faz değişim özelliklerini incelemek için diferansiyel taramalı kalorimetre (DSC) kullanıldı. PCM’lerin termal kararlılık ve bozunma profil incelendi. Stearik propargyl esteri ve PCM’lerin yapısal karakterizasyonu ATR-FTIR spektroskopisi ile gerçekleştirildi. Grafen oksit eklenmesiyle baz formülasyona göre maksimum kütle kaybı sıcaklığı 328 dan 351 ˚C ye yükseldi. Aynı zamanda stearik propargyl çapraz bağlanmasıyla PCM’lerin akma problem engellendi.

Preparation of Stearic Acid/Graphene oxide Based Form-Stable Composite Phase Change Materials

Composite phase change materials (PCM) of stearic acid/graphene oxide were prepared by thiol-alkyne click coupling reaction.Stearic acid was firstly modified with propargyl to introduce thiol-yneclickable sites. Different amounts of graphene oxide were added to thiol-alkyne clickable formulation. To evaluate phase change properties of PCMs differential scanning calorimeter (DSC) was used. Thermal stability and degradation profiles of PCMs were investigated. The structural characterization of stearic propargyl ester and PCMs was performed by aTR-FTIR spectroscopy. The addition of graphene oxide increased the maximum weigh loss temperature from 328 to 351 ˚C with respect to the base formulation. Moreover, the crosslinking of stearic acid prevented the leakage of PCMs.

___

  • Li, C., Xie, B., & Chen, J. (2017). Graphene-decorated silica stabilized stearic acid as a thermal energy storage material. RSC Advances, 7(48), 30142–30151.
  • Sharma, S. D., &Sagara, k. (2005). latent Heat Storage Materials and Systems: a Review. International Journal of Green Energy, 2(1), 1–56.
  • Baetens, R., Jelle, B. P., &Gustavsen, a. (2010). Phase change materials for building applications: a state-of-the-art review. Energy and Buildings, 42(9), 1361–1368.
  • Baştürk, E., & kahraman, M. V. (2016). Photocrosslinkedbiobased phase change material for thermal energy storage. Journal of Applied Polymer Science, 133(32).
  • Grynning, S., Goia, F., Rognvik, E., & Time, B. (2013).Possibilities for characterization of a PCM window system using large scale measurements.International Journal of Sustainable Built Environment, 2(1), 56–64.
  • alva, G., Huang, X., liu, l., & Fang, G. (2017). Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage. Applied Energy, 203, 677–685.
  • Zhang, T., Chen, M., Zhang, Y., & Wang, Y. (2017). Microencapsulation of stearic acid with polymethylmethacrylate using iron (III) chloride as photo-initiator for thermal energy storage. Chinese Journal of Chemical Engineering, 25(10), 1524–1532.
  • Döğüşcü, D. k., altıntaş, a., Sarı, a., &alkan, C. (2017). Polystyrene microcapsules with palmitic-capric acid eutectic mixture as building thermal energy storage materials. Energy and Buildings, 150, 376–382.
  • Feldman, D., Banu, D., & Hawes, D. (1995). low chain esters of stearic acid as phase change materials for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 36(3), 311–322.
  • Cheng, X., li, G., Yu, G., li, Y., & Han, J. (2017). Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials. Journal of Materials Science, 52(20), 12370–12379.
  • Baştürk, E., & kahraman, M. V. (2016). Photocrosslinkedbiobased phase change material for thermal energy storage. Journal of Applied Polymer Science, 133(32), 43757-43765.
  • Baştürk, E., Deniz, D. Y., &kahraman, M. V. (2016). Preparation of thiol-ene based photo-crosslinked polymer as a potential phase change material. Materials Chemistry and Physics, 177, 521–528.
  • Tiwari a, Syvajarvi M, editors. 2016advanced 2D materials. Hoboken, New Jersey: Scrivener Publishing, Wiley;.511 p.
  • Zhong, Y., Zhou, M., Huang, F., lin, T., & Wan, D. (2013). Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Solar Energy Materials and Solar Cells, 113, 195–200.
  • Cui, Y., liu, C., Hu, S., & Yu, X. (2011). The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Materials and Solar Cells, 95(4), 1208–1212.
  • Wang, J.-H., Cheng, C.-C., Yen, Y.-C., Miao, C.-C., & Chang, F.-C. (2012). Block-copolymer-like supramolecules confined in nanolamellae. Soft Matter, 8(14), 3747.
  • anandhi, a., Palraj, S., Subramanian, G., &Selvaraj, M. (2016). Corrosion resistance and improved adhesion properties of propargyl alcohol impregnated mesoporous titanium dioxide built-in epoxy zinc rich primer. Progress in Organic Coatings, 97, 10–18.
  • Han, C., liu, Y., Ma, J., & He, H. (2012).key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2.Proceedings of the National Academy of Sciences, 109(52), 21250–21255.
  • Ţucureanu, V., Matei, a., &avram, a. M. (2016). FTIR Spectroscopy for Carbon Family Study. CriticalReviews in Analytical Chemistry, 46(6), 502–520.
  • knothe, G., & Dunn, R. o. (2009). a Comprehensive Evaluation of the Melting Points of Fatty acids and Esters Determined by Differential Scanning Calorimetry. Journal of the American Oil Chemists’ Society, 86(9), 843–856.
  • Ye, S., Zhang, Q., Hu, D., & Feng, J. (2015). Core–shelllike structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. Journal of Materials Chemistry A, 3(7), 4018–4025.
  • Ding, l., Wang, l., Georgios, k., lü, Y., & Zhou, W. (2017). Thermal characterization of lauric acid and stearic acid binary eutectic mixture in latent heat thermal storage systems with tube and fins. Journal of Wuhan University of Technology-Mater. Sci. Ed., 32(4), 753–759.
  • Myhren, J. a., &Holmberg, S. (2008). Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy and Buildings, 40(4), 524–536.
  • Li, B., liu, T., Hu, l., Wang, Y., &Nie, S. (2013). Facile preparation and adjustable thermal property of stearic acid–graphene oxide composite as shape-stabilized phase change material. Chemical Engineering Journal, 215–216, 819–826.
  • Karaman, S., karaipekli, a., Sarı, a., &Biçer, a. (2011). Polyethylene glycol (PEG)/diatomite composite as a novel formstable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 95(7), 1647–1653.
  • Zhang, D., Tian, S., & Xiao, D. (2007). Experimental study on the phase change behavior of phase change material confined in pores. Solar Energy, 81(5), 653–660.
  • uemura, T., Yanai, N., Watanabe, S., Tanaka, H., Numaguchi, R., Miyahara, M. T., kitagawa, S. (2010). unveiling thermal transitions of polymers in subnanometre pores. Nature Communications, 1(7), 1–8.
  • Fu, X., liu, Z., Xiao, Y., Wang, J., & lei, J. (2015). Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage. Energy and Buildings, 104, 244–249.
  • He, H., Zhao, P., Yue, Q., Gao, B., Yue, D., & li, Q. (2015). a novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation. Renewable Energy, 76, 45–52.