Site Analysis of Maritime Transportation Infrastructures by Using the Coastal Vulnerability Index Approach: The Case of Bodrum Peninsula

Site Analysis of Maritime Transportation Infrastructures by Using the Coastal Vulnerability Index Approach: The Case of Bodrum Peninsula

In this research, site locations of marina-type maritime transportation infrastructure (MTI) in the Bodrum Peninsula were analyzed using the coastal vulnerability index (CVI) approach. For the calculation of CVI, six parameters; coastal slope, relief, relative sea level change, shoreline erosion/accretion, mean tide range, and mean wave height were used in accordance with the method. After the data collected from different data sources were transferred into a geo-database, basic geographical information systems analyses were applied (reclass, buffer, subset, slope, overlay, classify, count, map algebra, etc.). CVI results have been presented as maps and tabular values using a scale of 1 (Very Low) to 5 (Very High). Thus, the vulnerability level of the MTI site locations was determined. According to the determined results, it was founded that, Ortakent and Turgutreis were Very High (red-5); Yalıkavak, Milta and Kale MTIs are High (orange-4); Cruise Port, Gumbet and Bitez were found to have Moderate (yellow-3) CVI values. In this research, the CVI approach was applied by evaluating the physical site location characteristics of marina-type MTI, for the first time applied in the Bodrum Peninsula, where there is a high density of marina. For adaptation strategies for existing MTIs, more investigations should be realized from the functional, economic, social, and ecosystem points of view. From the managerial point of view, it can be said that small marinas or municipal berthing facilities with a state ownership model are advised to work together with other marinas in the region if they exist. The CVI-methodology should also utilize for the site selection of any type of maritime transportation infrastructure.

___

  • Aerts, J., Botzen, W. J., Eamanuel, K., Lin, N., de Moel, H., & Michael-Kerjan, E. (2014). Evaluating flood resilience strategies for coastal megacities. Science, 344(6183), 473–476. https://doi.org/10.1126/science.1248222
  • Becker, A., Fischer, M., & Matson, P. (2010). Impacts of climate change of seaports: A survey of knowledge, perceptions, and planning efforts among port administrators. Shifting Shorelines: Adapting to the Future, The 22nd International Conference of The Coastal Society. North Carolina, USA. Retrieved on November 29, 2022 from http://nsgl.gso.uri.edu/coastalsociety/TCS22/papers/Becker_papers.pdf
  • Becker, A., Inoue, S., Fischer, M., & Schwegler, B. (2012). Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators. Climate Change, 110, (5–29), 1480–1573. https://doi.org/10.1007/s10584-011-0043-7
  • Becker, A., Chase, N. T. L., Fischer, M., Schwegler, B., & Mosher, K. (2016). A method to estimate climate-critical construction materials applied to seaport protection. Global Environmental Change, 40(2016), 125–136. https://doi.org/10.1016/j.gloenvcha.2016.07.008
  • Caldwell, P. C., Merrfield M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans - the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.7289/v5v40s7w
  • Campbell, J., & Shin, M. (2011). Essentials of Geographic Information Systems. Saylor Foundation. https://open.umn.edu/opentextbooks/textbooks/67
  • Cheong, S. M. (2011). Policy solutions in the U.S. Climatic Change, 106, 57–70. https://doi.org/10.1007/s10584-010-9996-1
  • Christodoulou, A., Christidis, P., & Demirel, H. (2019). Sea‑level rise in ports: A wider focus on impacts. Maritime Economics & Logistics, 21, 482–496. https://doi.org/10.1057/s41278-018-0114-z
  • CMS (Copernicus Marine Service). (2021). Copernicus marine in situ TAC data management team (2021). Copernicus Marine in situ TAC - physical parameters list. Retrieved on November 29 2022, from https://doi.org/10.13155/53381
  • CMS (Copernicus Marine Service) (2022). Global Ocean Waves Reanalysis WAVERYS. Retrieved on November 29, 2022, from https://doi.org/10.48670/moi-00022
  • Cogswell, A., Greenan, B. J. W., & Greyson, P. (2018). Evaluation of two common vulnerability index calculation methods. Ocean & Coastal Management, 160, 46-51. https://doi.org/10.1016/j.ocecoaman.2018.03.041
  • Cooper, J. A. G., & McLaughlin, S. (1998). Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. Journal of Coastal Research, 14(2), 512-524.
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003) Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • DLH (Demiryolları Limanlar ve Hava Meydanları İnşaatı Genel Müdürlüğü). (2010a). Ulaştırma Kıyı Yapıları Master Plan Çalışması, Sonuç Raporu. Retrieved on November 29, 2022, from https://aygm.uab.gov.tr/uploads/pages/master-plan-calismalari/masterplan1.pdf
  • DLH (Demiryolları Limanlar ve Hava Meydanları İnşaatı Genel Müdürlüğü). (2010b). Turizm Kıyı Yapıları Master Plan Çalışması, Sonuç Raporu. Retrieved on November 29, 2022, from https://aygm.uab.gov.tr/uploads/pages/master-plan-calismalari/masterplan2.pdf
  • ECU (Ecological Coastal Units). (2022). 1km global shoreline segments and segment midpoints characterized and clustered. Retrieved on November, 29, 2022, from https://www.arcgis.com/home/item.html?id=b3920b9e386945f2942e72e38f9142fe
  • ETC/ACC (European Topic Centre on Air and Climate Change). (2010a). European coastal climate change impacts, vulnerability and adaptation; a review of evidence. ETC/ACC Technical Paper 2010/7, November 2010. European Topic Centre on Air and Climate Change. Retrieved on November 29, 2022, from http://acm.eionet.europa.eu/reports/ETCACC_TP_2010_7_Coastal_IVA
  • ETC/ACC. (2010b). Methods for assessing current and future coastal vulnerability to climate change. ETC/ACC Technical Paper 2010/8, November 2010. European Topic Centre on Air and Climate Change. Retrieved on November 29, 2022, from http://acm.eionet.europa.eu/reports/ETCACC_TP_2010_8_Coastal_vuln_methods
  • Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards,T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J. -B., Slangen, A. B. A., & Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change (pp. 1211–1362) In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press. https://doi.org/10.1017/9781009157896.011
  • Glatte, T. (2015). Location strategies: Methods and their methodological limitations. Journal of Engineering, Design and Technology, 13(3), 435-462. https://doi.org/10.1108/JEDT-01-2013-0004
  • Golestani, M., & Amiri, F. (2021). Suitable site selection for Avicennia marina plantation in the coastal region of Bushehr, using best-worst multi-criteria decision-making method. Iranian Journal of Applied Ecology, 10(1), 15-33. https://doi.org/10.47176/ijae.10.1.9763
  • Gornitz, V. (1991). Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 89(4), 379–398. https://doi.org/10.1016/0031-0182(91)90173-O
  • Gornitz, V. M. (1990). Vulnerability of the East coast, U.S.A. to future sea level rise. Journal of Coastal Research, Special Issue 9, 201–237.
  • Gornitz, V. M., Daniels, R. C., White, T. W., & Birdwell, K. R. (1993). The development of a coastal risk assessment database: vulnerability to sea-level rise in the U.S. Southeast. U.S. Government Report, Oak Ridge National Laboratory Tennessee. DE-AC05-84OR21400. Retrieved on November 29, 2022, from https://www.osti.gov/servlets/purl/7061112
  • Gornitz, V. M., Daniels, R. C., White, T. W., & Birdwell, K. R. (1994). The development of a coastal risk assessment database: Vulnerability to sea-level rise in the U.S. southeast. Journal of Coastal Research, Special Issue No. 12, 327-338.
  • Guillard-Goncąlves, C., Cutter, S. L., Emrich, C. T., & Zezere, J. L. (2015) Application of social vulnerability index (SoVI) and delineation of natural risk zones in Greater Lisbon, Portugal. Journal of Risk Research, 18(5), 651–674. https://doi.org/10.1080/13669877.2014.910689
  • Hanson, S. E., & Nicholls, R. J. (2020). Demand for ports to 2050: Climate policy, growing trade and the impacts of sea‐level rise. Earth’s Future, 8, e2020EF001543. https://doi.org/10.1029/2020EF001543
  • IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.)]. Cambridge University Press. 1132 p. Retrieved on November 29, 2022, from https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-FrontMatterA_FINAL.pdf
  • IPCC (Intergovernmental Panel on Climate Change). (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H. -O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.)]. Cambridge University Press. 755 p. https://doi.org/10.1017/9781009157964
  • Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L., & Stenek V. (2021). Climate change risk to global port operations. Nature Climate Change, 11, 14–20. https://doi.org/10.1038/s41558-020-00937-z
  • Kleinosky, L. R., Yarnal, B., & Fisher, A. (2007). Vulnerability of Hampton roads, Virginia to storm-surge flooding and sea-level rise. Natural Hazards, 40(1), 43–70. https://doi.org/10.1007/s11069-006-0004-z
  • Koroglu, A., Ranasinghe, R., Jiménez, J. A., & Dastgheib, A. (2019). Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean and Coastal Management, 178, 104799. https://doi.org/10.1016/j.ocecoaman.2019.05.001
  • Kuleli, T. (2010). City-based risk assessment of sea level rise using topographic and census data for the Turkish coastal zone. Estuaries and Coasts, 33(3), 640–651. https://doi.org/10.1007/s12237-009-9248-7
  • Kuleli, T., Guneroglu, A., Karsli, F., & Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141–1149. https://doi.org/10.1016/j.oceaneng.2011.05.006
  • Lazarus, E. D., & Ziros, L. A. (2021). Yachts and marinas as hotspots of coastal risk. Anthropocene Coasts, 4, 61–76 (2021) https://doi.org/10.1139/anc-2020-0012
  • Messner, S. F., Moran, L., Reub, G., & Campbell, J. (2013). Climate change and sea level rise impacts at ports and a consistent methodology to evaluate vulnerability and risk. WIT Transactions on Ecology and the Environment, 169, 141-153. https://doi.org/10.2495/CP130131
  • Minar, M. H., Belal Hossain, M., & Shamsuddin, M. D. (2013). Climate change and coastal zone of Bangladesh: Vulnerability, resilience and adaptability. Middle-East Journal of Scientific Research, 13(1), 114-120. https://doi.org/10.5829/idosi.mejsr.2013.13.1.64121
  • Monioudi, I. N., Asariotis R., Becker, A., Bhat, C., Dowding-Gooden, D., Esteban, M. Feyen, L., Mentaschi, L., Nikolaou, A., Nurse, L. Phillips, W., Smith, D. Α. Y., Satoh, M., O’Donnell Trotz, U., Velegrakis, A. F., Voukouvalas, E., Vousdoukas, M. I., & Witkop, R. (2018). Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): The case of Jamaica and Saint Lucia. Regional Environmental Change, 18, 2211–2225. https://doi.org/10.1007/s10113-018-1360-4
  • Murphy, P. R., Daley, J. M., & Dalenberg, D. R. (1992). Port selection criteria: An application of a transportation research framework. The Logistics and Transportation Review, 28(3), 237-255.
  • NASA JPL (National Aeronautics and Space Administration Jet Propulsion Laboratory). (2013). NASA Shuttle Radar Topography Mission Global 1 arc second number [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved on November 29, 2022, from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1N.003
  • Nguyen, T. T. M., Nguyen, D. T., Truong, M. H., & Nguyen, A. D. (2021). GIS-based simulation for deep-water port site selection using analytic hierarchy process: a case study from Southern East of Vietnam. Applied Geomatics 13, 107–118. https://doi.org/10.1007/s12518-020-00319-2
  • Notteboom, T., Pallis, A., & Rodrigue, J. P. (2022). Port Economics, Management and Policy. Routledge.
  • Özhan, E., & Abdalla, S. (2002). Türkiye kıyıları rüzgar ve derin deniz dalga atlası. MedCoast – Orta Doğu Teknik Üniversitesi, Sürüm 1.0, 2002, ISBN: 975429190X, 9789754291902 445 s. [Turkey coast wind and deep sea wave atlas. MedCoast – Middle East Technical University, Version 1.0, 2002, ISBN: 975429190X, 9789754291902, 445 p.]
  • Ergin, A., Ozyurt, G., & Esen, M. (2008). Indicator based coastal vulnerability assessment model to sea level rise. Paper presented at the Seventh International Conference on Coastal and Port Engineering in Developing Countries COPEDEC VII “Best Practices in the Coastal Environment”. Dubai, UAE. pp. 130.
  • PIANC (the World Association for Waterborne Transport Infrastructure). (2019). MarCom WG Report 185 – 2019. Ports on Greenfield sites – Guidelines for site selection and master planning. PIANC. Retrieved on November 29, 2022, from https://www.pianc.org/publications/marcom/wg185
  • Ramieri, E., Hartley, A., Barbanti, A., Duarte Santos, F., Gomes, A., Hilden, M., Laihonen, P., Marinova, N., & Santini, M. (2011). Methods for assessing coastal vulnerability to climate change, European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC CCA) Technical Paper, Bologna (IT) 93, October 2011. Retrieved on November 29, 2022, from https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/1/@@download/file/TP_1-2011.pdf
  • Sayre, R., Martin, M. T., Cress, J. J., Butler, K., Van Graafeiland, K., Breyer, S., Wright, D., Frye, C., Karagulle, D., Allen, T., Allee, R. J., Parsons, R., Nyberg, B., Costello, M. J., Muller-Karger, F., & Harris, P. (2021). Earth’s coastlines (pp. 4-27). In Wright, D., & Harder, C. (Eds.), GIS for Science, Volume 3: Maps for Saving the Planet. Esri Press. https://pubs.er.usgs.gov/publication/70222519
  • Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., Butler, K., Van Graafeiland, K., Frye, C., Karagulle, D., Hopkins, D., Stephens, D., Kelly, K., Basher, Z., Burton, D., Cress, J., Atkins, K., Van Sistine, D. P., Friesen, B., Allee, R., Allen, T., Aniello, P., Asaad, I., Costello, M. J., Goodin, K., Harris, P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger, F., Nyberg, B., Parsons, R., Saarinen, J., Steiner, J., & Reed, A. (2018). A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized global ecological coastal units. Journal of Operational Oceanography, 12(sup2), S47-S56. https://doi.org/10.1080/1755876X.2018.1529714
  • Shaw, J., Taylor, R. B., Forbes, D. L., Ruz, M.-H., & Solomon, S. (1998). Sensitivity of the coasts of Canada to sea-level rise. Bulletin of the Geological Survey of Canada, 505, 1–79.
  • SLE (The Sea Level Explorer). (2022). Satellite altimetry and tide gauge data for exploring sea level changes and measurement comparisons. Retrieved on November 29, 2022, from https://ccar.colorado.edu/altimetry/index.html
  • SRTM (Shuttle Radar Topography Mission). (2018).1 Arc-Second Global elevation data offer worldwide coverage of void filled data at a resolution of 1 arc-second (30 meters) and provide open distribution of this high-resolution global data set. Retrieved on November 29, 2022, from https://doi.org/10.5066/F7PR7TFT
  • Sweeney, B., & Becker, A. (2020). Considering future sea level change in maritime infrastructure design: A survey of US engineers. Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(4), p.04020019. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000583
  • Taneja, P., & Oosterwegel, M. (2022). Towards a Framework for Sustainable Port Site Selection (pp. 1-5). Australasian Coasts and Ports 2021 Conference, New Zealand. p.226. Retrieved on November 29, 2022, from https://www.coastsandports.org/papers/2021/226_oosterwegel_finalpaper.pdf.
  • Tate, E., Cutter, S. L., & Berry, M. (2010) Integrated multihazard mapping. Environment and Planning B: Urban Analytics and City Science, 37(4), 646–663. https://doi.org/10.1068/b35157
  • Tragaki, A., Gallousi, C., & Karymbalis, E. (2018). Coastal hazard vulnerability assessment based on geomorphic, oceanographic and demographic parameters. Land, 7(2), 56. https://doi.org/10.3390/land7 020056
  • TUDES (Türkiye Ulusal Deniz Seviyesi İzleme Sistemi). (2022). Sea Level Observations. Retrieved on November 29, 2022, from https://tudes.harita.gov.tr/.
  • TUIK (Turkish Statistical Institute). (2022). Address Based Population Registration System (ADNKS). Retrieved on February 6, 2023, from https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
  • UN (United Nations). (1992). Assessment of the Environmental Impact of Port Development. A Guidebook for EIA of Port Development, p. 77. Retrieved on November 29, 2022, from https://www.unescap.org/sites/default/files/pub_1234_fulltext.pdf
  • UN (United Nations). (2020). United Nations Conference on Trade and Development. Report of the Multi-year Expert Meeting on Transport, Trade Logistics and Trade Facilitation on its eighth session. Retrieved on November 29, 2022, from https://unctad.org/system/files/official-document/cimem7d24_en.pdf
  • USGS (U.S. Geological Survey). (2020). Shuttle Radar Topography Mission 1-arc second Global. Retrieved on November 25, 2022, from https://catalog.data.gov/dataset/shuttle-radar-topography-mission-1-arc-second-global
  • USGS (U.S. Geological Survey). (2022). Earth Explorer. Retrieved on November 29, 2022, from https://earthexplorer.usgs.gov/
  • Xu, H. (2005). A Study on Information extraction of water body with the Modified Normalized Difference Water Index (MNDWI). Journal of Remote Sensing, 9(5), 589-595.
  • DeYoung, J. (2022). Forest measurements: An applied approach. Open Oregon Educational Resources. Retrieved on November 29, 2022, from https://openoregon.pressbooks.pub/forestmeasurements/
  • Zlotnicki, V., Qu, Z., & Joshua, W. (2019). MEaSUREs Gridded Sea Surface Height Anomalies Version 1812. Ver. 1812. PO. DAAC, CA, USA. Retrieved on April 3, 2020, from at https://doi.org/10.5067/SLREF-CDRV2
Marine Science and Technology Bulletin-Cover
  • ISSN: 2147-9666
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Adem Yavuz SÖNMEZ