Role of Heat Shock Protein Influencing Bioactive Compounds From Mangrove Tropical Estuarine Microalgae for Enhancement of Copepod Egg Production in Culture System

In silico investigations of the natural bioactive compounds in the microalgae from mangrove tropical estuaries showed an influence on heat shock protein -70 production. Incorporation of algae with such compounds in the diet of copepod high density culture might lead to enhanced egg production. For this study, the structure of the ligands (bioactive compounds from microalgae in the region of the mangrove estuary) and X-ray crystal structure of hsp-70 complex was taken from PDB (3P9Y) with a resolution of 2.10 Å. The molecular docking study was performed using GOLD software. In the present study, a total of ten bioactive compounds showed good molecular interaction with hsp-70 protein. Among these bioactive compounds, Quercetin from the microalga, Chlamydomonas eugametos exhibited the highest molecular interaction and this compound is potential for enhancement of hsp-70 protein compared to other bioactive compounds and is considered a good nutrient enrichment for copepod culture as well as enhancement of hsp-70 protein against ROS and adverse environmental conditions. Successful high density copepod culture might lead to scaling up of hatchery rearing of marine finfish larvae.

___

  • Altaff, K. (2020). Indigenous live feed for aqua hatchery larval rearing of finfish and shellfish: A review. International Journal of Zoological Investigations, 6(1), 162-173. https://doi.org/10.33745/ijzi.2020.v06i01.013
  • Altaff, K., & Janakiraman, A. (2015). Effect of temperature on mass culture of three species of zooplankton, Brachionus plicatilis, Ceriodaphnia reticulata and Apocyclops dengizicus. International Journal of Fisheries and Aquatic Studies, 2(4), 49-53.
  • Altaff, K., & Vijayaraj, R. (2021). Influence of heat shock protein (HSP-70) enhancing compound from red alga (Porphyridium cruentum) for augmenting egg production in copepod culture–A new in silico report. Marine Science and Technology Bulletin, 10(2), 186-192. https://doi.org/10.33714/masteb.843705
  • Aman, S., & Altaff, K. (2004). Biochemical profile of Heliodiaptomus viduus, Sinodiaptomus (Rhinediaptomus) indicus, and Mesocyclops aspericornis and their dietary evaluation for postlarvae of Macrobrachium rosenbergii. Zoological Studies, 43(2), 267-275.
  • Aruda, A. M., Baumgartner, M. F., Reitzel, A. M., & Tarrant, A. M. (2011). Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Journal of Insect Physiology, 57(5), 665-675. https://doi.org/10.1016/j.jinsphys.2011.03.007
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304
  • Birch, A. J., Donovan, F. W., & Moewus, F. (1953). Biogenesis of flavonoids in Chlamydomonas eugametos. Nature, 172(4385), 902-904. https://doi.org/10.1038/172902a0
  • Cao, L. H., & Li, J. (2018). Plant-originated kaempferol and luteolin as allelopathic algaecides inhibit aquatic microcystis growth through affecting cell damage, photosynthetic and antioxidant responses. Journal of Bioremediation & Biodegradation, 9(2), 431. https://doi.org/10.4172/2155-6199.1000431
  • Clegg, J. (1997). Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. The Journal of Experimental Biology, 200(3), 467-475. https://doi.org/10.1242/jeb.200.3.467
  • Danks, H. V. (1987). Insect dormancy: An ecological perspective. Biological survey of Canada (Terrestrial Arthropods). Natural Museum of Natural Sciences, Ottawa, Canada.
  • Drillet, G., Iversen, M. H., Sørensen, T. F., Ramløv, H., Lund, T., & Hansen, B. W. (2006). Effect of cold storage upon eggs of a calanoid copepod, Acartia tonsa (Dana) and their offspring. Aquaculture, 254(1-4), 714-729. https://doi.org/10.1016/j.aquaculture.2005.11.018
  • Duerr, E. O., Molnar, A., & Sato, V. (1998). Cultured microalgae as aquaculture feeds. Journal of Marine Biotechnology, 6(2), 65-70.
  • Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61(1), 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  • Ferdous, U. T., & Balia Yusof, Z. N. (2021). Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules (Basel, Switzerland), 26(22), 6844. https://doi.org/10.3390/molecules26226844
  • Hofmann, G. E., & Hand, S. C. (1994). Global arrest of translation during invertebrate quiescence. Proceedings of the National Academy of Sciences, 91(18), 8492-8496. https://doi.org/10.1073/pnas.91.18.8492
  • Holmstrup, M., Overgaard, J., Sørensen, T. F., Drillet, G., Hansen, B. W., Ramløv, H., & Engell‐Sørensen, K. (2006). Influence of storage conditions on viability of quiescent copepod eggs (Acartia tonsa Dana): Effects of temperature, salinity and anoxia. Aquaculture Research, 37(6), 625-631. https://doi.org/10.1111/j.1365-2109.2006.01472.x
  • Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and Cyanobacteria strains. Journal of Food Quality, 2017, 2924508. https://doi.org/10.1155/2017/2924508
  • Kumaran, Â. N. S. (2017). Biosynthesis of silver nanoparticles using Abutilon indicum (Link): An investigation of anti-inflammatory and antioxidant potential against carrageen induced paw edema in rats. Asian Journal of Pharmaceutics, 11(02), 92-101. https://doi.org/10.22377/ajp.v11i02.1152
  • Kumaran, N. S. (2018). Evaluation of in vivo antidiabetic and antioxidant activity of Achyranthes aspera Linn. seeds by streptozotocin induced diabetic rats. International Journal of Green Pharmacy, 12(01), 29-37. https://doi.org/10.22377/ijgp.v12i01.1520
  • Lv, J. W., Yang, X. Q., & Li, L. H. (2014). Antioxidant activity and chemical constituents of microalgae oil of Schizochytrium aggregatum. In Abbas, H., & Tan, K. H. (Eds.), Advanced Materials Research (Volumes 919-921) (pp. 2022-2029). Trans Tech Publications Ltd.
  • Marcus, N. H. (1996). Ecological and evolutionary significance of resting eggs in marine copepods: past, present, and future studies. Hydrobiologia, 320, 141-152. https://doi.org/10.1007/BF00016815
  • Nielsen, P., Mortensen, J., Vismann, B., & Hansen, B. W. (2006). Physiological tolerance of marine calanoid copepod eggs to sulphide. Marine Ecology Progress Series, 328, 171-182. https://doi.org/10.3354/meps328171
  • Nilsson, B., Jepsen, P. M., Rewitz, K., & Hansen, B. W. (2014). Expression of hsp70 and ferritin in embryos of the copepod Acartia tonsa (Dana) during transition between subitaneous and quiescent state. Journal of Plankton Research, 36(2), 513-522. https://doi.org/10.1093/plankt/fbt099
  • Pedler, S., Fuery, C. J., Withers, P. C., Flanigan, J., & Guppy, M. (1996). Effectors of metabolic depression in an estivating pulmonate snail (Helix aspersa): whole animal and in vitro tissue studies. Journal of Comparative Physiology B, 166(6), 375-381. https://doi.org/10.1007/bf02336920
  • Petkeviciute, E., Kania, P. W., & Skovgaard, A. (2015). Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation. Aquaculture Reports, 2, 10-16. https://doi.org/10.1016/j.aqrep.2015.04.001
  • Rhee, J. S., Raisuddin, S., Lee, K. W., Seo, J. S., Ki, J. S., Kim, I. C., Park, H. G., & Lee, J. S. (2009). Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(1), 104-112. https://doi.org/10.1016/j.cbpc.2008.07.009
  • Rismani, S., & Shariati, M. (2017). Changes of the total lipid and omega-3 fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Brazilian Archives of Biology and Technology, 60, e17160555. https://doi.org/10.1590/1678-4324-2017160555
  • Saifullah, A. S. M., Kamal, A. H. M., Idris, M. H., Rajaee, A. H., & Bhuiyan, M. K. A. (2016). Phytoplankton in tropical mangrove estuaries: role and interdependency. Forest Science and Technology, 12(2), 104-113. https://doi.org/10.1080/21580103.2015.1077479
  • Sanjeewa, K. K. A., Fernando, I. P. S., Samarakoon, K. W., Lakmal, H. H. C., Kim, E. A., Kwon, O. N., Dilshara, M. G., Lee, J. B., & Jeon, Y. J. (2016). Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsis oculata. Algae, 31(3), 277-287. https://doi.org/10.4490/algae.2016.31.6.29
  • Sivakumar, N., Sundararaman, M., & Selvakumar, G. (2011). Efficacy of micro algae and cyanobacteria as a live feed for juveniles of shrimp Penaeus monodon. African Journal of Biotechnology, 10(55), 11594-11599.
  • Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2), 172-215. https://doi.org/10.3109/07388551.2012.681625
  • Sørensen, T. F., Drillet, G., Engell-Sørensen, K., Hansen, B. W., & Ramløv, H. (2007). Production and biochemical composition of eggs from neritic calanoid copepods reared in large outdoor tanks (Limfjord, Denmark). Aquaculture, 263(1-4), 84-96. https://doi.org/10.1016/j.aquaculture.2006.12.001
  • Stuart, J. A., & Brown, M. F. (2006). Energy, quiescence and the cellular basis of animal life spans. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(1), 12-23. https://doi.org/10.1016/j.cbpa.2005.11.002
  • Su, G., Jiao, K., Chang, J., Li, Z., Guo, X., Sun, Y., Zeng, X., Lu, Y., & Lin, L. (2016). Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresources and Bioprocessing, 3(1), 33. https://doi.org/10.1186/s40643-016-0110-z
  • Tartarotti, B., & Torres, J. J. (2009). Sublethal stress: impact of solar UV radiation on protein synthesis in the copepod Acartia tonsa. Journal of Experimental Marine Biology and Ecology, 375(1-2), 106-113. https://doi.org/10.1016%2Fj.jembe.2009.05.016
  • Vijayaraj, R., Altaff, K., Rosita, A. S., Ramadevi, S., & Revathy, J. (2021). Bioactive compounds from marine resources against novel corona virus (2019-nCoV): In silico study for corona viral drug. Natural Product Research, 35(23), 5525-5529. https://doi.org/10.1080/14786419.2020.1791115
  • Vijayaraj, R., Sri Kumaran, N., Altaff, K., Ramadevi, S., & Sherlin Rosita, A. (2019). In silico pharmacokinetics and molecular docking of novel bioactive compound (11-methoxy-2-methyltridecane-4-ol) for inhibiting carbohydrates hydrolyzing enzyme. Journal of Biologically Active Products from Nature, 9(6), 445-456. https://doi.org/10.1080/22311866.2020.1714478
  • Voznesensky, M., Lenz, P. H., Spanings-Pierrot, C., & Towle, D. W. (2004). Genomic approaches to detecting thermal stress in Calanus finmarchicus (Copepoda: Calanoida). Journal of Experimental Marine Biology and Ecology, 311(1), 37-46. https://doi.org/10.1016/j.jembe.2004.04.017