Tuzlu Toprak Koşullarında Kabakta Arbusküler Mikorhizal Fungus Uygulamalarının Fide Gelişmesine Etkisi

Bu çalışma, çerezlik kabak genotiplerin tuzlu toprak koşullarında Arbusküler Mikorhizal Fungus uygulamalarının fide döneminde bitki gelişimesine etkilerini araştırmak amacıyla 2016 yılında Selçuk Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü iklim odalarında yürütülmüştür. Denemede tohum ekimi ile beraber farklı AMF türleri (G. mosseae, G. intraradices ve G. margarita) uygulanmış, fidelere ortalama üç gerçek yapraklı dönemde 300 mM NaCl uygulaması yapılmıştır. NaCl uygulamasından 14 gün sonra fide gelişimi parametreleri belirlenmiştir. Denemede tuzlu toprak koşullarında genel olarak B33 genotipiA24 genotipinden daha iyi gelişme göstermiştir. G. mosseaediğer AMF türlerine göre tuzlu koşullarda fide gelişimine daha olumlu etkiler yaptığı görülmektedir. Sonuç olarak tuzlu toprak koşullarında bitki gelişimi üzerine genotip, uygulanan AMF türü ve uygun genotip AMF türü kombinasyonlarının etkili olduğu ortaya çıkmıştır

Effect of Arbuscular Mycorrhizal Fungus Application on Seedling Development of pumpkinin Saline Soil Conditions

This study was conducted to investigate the effect of the application of Arbuscular Mycorrhizal Fungi on the plant growth during seedling period in the salty soil conditions of the pumpkin genotypes in the growth chamber of the Faculty of Agriculture of Selcuk University in 2016. In experiment, 300 mM NaCl was performed to seedling that applied different AMF strains (G. mosseae, G. intraradices and G. margarita) together with seed sowing at the three true leave stage. After 14 days of NaCl application, seedling development parameters were determined. In general, the B33 genotype showed better improvement in saline conditions from the A24 genotype in the experiment. Compared to the other AMF strainsit seems that G. mosseaestrain have a more positive effect on seedling growth in salt conditions. As a result, it emerged that the effectiveness of the genotype, applied AMFstrains and appropriate genotype AMF strains combinations have influence to seedling growth in saline soil conditions.

___

  • 1. FAOSTAT, 2014, Statistic Database.http://faostat.fao.org/.
  • 2. TUİK, 2014, Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri.
  • 3. Seymen, M., Ö. Türkmen M., Paksoy, 2013. Selection of edible pumpkin seeds (Cucurbita pepo L.) genotypes. Journal of Selçuk University Natural and Applied Science. 2(4): pp-29-39.
  • 4. Fu, CL., Shi, H., Li, QH., (2006). A review on pharmacological aktivities and utilization technologies of pumpkin. Pland Foods Hum. Nutr. 61: 73-80.
  • 5. Murkovic, Mİ., Piironen, Vİ., M.Lampi, AN., Kraushofer, TA., Sontag, GE., 2004, Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil, 359-365.
  • 6. Türkmen, Ö., Uslu, N., Paksoy, M., Seymen, M., Fidan, S., Özcan, M.M. 2015. Evaluation of fatty acid composition, oil yield and total phenol content of various pumpkin seed genotypes. Rıv Ital Sostanze Gr - Vol-92- Pp-93-97.
  • 7. Seymen M, Uslu N, Türkmen Ö, Juhaimi F.A, Özcan M.M, 2016. Chemical Compositions and Mineral Contents of Some Hull-Less Pumpkin Seed and Oils. J. Am. Oil Chem.Soc.93:1095-1099.
  • 8. Glenn, E.P., Brown, J.J., Khan, M.J., 1997 ‘‘Mechanisms of Salt Tolerance in Higher Plants’’,
  • 9. Bressan, R.A., ‘‘Stres Fizyolojisi’’, Editörler: Taiz, L., Zeiger, E., Çeviri Editörü: Türkan Đ., ‘‘Bitki Fizyolojisi’’, Palme Yayıncılık, Ankara, 591-620 (2008).
  • 10. Koca, H., Bor, M., Özdemir, F., and Türkan, Đ., ‘‘The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars’’, Environ Exp Bot., 60: 344-351 (2007).
  • 11. Parida, A.K., and Das, A.B., ‘‘Salt tolerance and salinity effects on plants: a review’’, Ecotoxicol Environ Saf., 60: 324-349 (2005).
  • 12. Gürel A., and Avcıoğlu, R., ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi’’, 21. bölüm, Editörler: Özcan, S., Gürel, E., Babaoğlu, M., ‘‘Bitki Biyoteknolojisi II, Genetik Mühendisliği veUygulamaları’’, Selçuk Üniversitesi Vakfı Yayınları, 308- 313, (2001).
  • 13. Greenway, H. ve Munns, R., 1980, Mechanisms of salt tolerance in nonhalophytes, Annu Rev Plant Physiol., 31 (1), 149-190.
  • 14. Koç, D., L, 2011, Aşağı Seyhan Ovası Tuzlu-Sodyumlu Topraklarının Farklı Yöntemlerle İyileştirilmesi, Doktora Tezi, Çukurova Üniversitesi, Adana.
  • 15. Dajic, Z., 2006. Salt Stress, Physiology and Molecular Biology of Stress Tolerance in Plants, ISBN-13 978-1-4020-4224-9, Dordrecht, The Netherlands, 345p.
  • 16. Munns, R., 2002a. Salinity, Growth and Phytohormones, Salinity: Environment-Plants-Molecules, Published by Kluwer Academic Publishers, ISBN 1-4020-0492-3, Dordrecht, The Netherlands, 522p.
  • 17. Harley, J. L. ve Smith, S. E., 1983, Mycorrhizal symbiosis, Academic Press.
  • 18. Türkmen, Ö., Şensoy, S., Demir, S. ve Erdinc, C., 2008, Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress, Afr. J. Biotechnol., 7 (4).
  • 19. Abbaspour, H., Fallahyan, F., Fahimi, H. ve Afshari, H., 2006, Response of Pistacia vera L. in salt tolerance to inoculation with arbuscular mycorrhizal fungi under salt stress, Acta Hortic.
  • 20. Sinclair, G., Charest, C., Dalpé, Y. ve Khanizadeh, S., 2014, Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions, Agric. food sci., 23 (2), 146-158.
  • 21. Al-Karaki, G. N., 2000, Growth of mycorrhizal tomato and mineral acquisition under salt stress, Mycorrhiza, 10 (2), 51-54.
  • 22. Demir, S., 1998, Bazı Kültür Bitkilerinde Vesiküler Arbusküler Mikorhiza (VAM) Oluşumu ve Bunun Bitki Gelişimi ve Dayanıklılıktaki Rolü Üzerinde Araştırmalar.
  • 23. Çiftçi, V., Türkmen, Ö., Erdinç, C. ve Sensoy, S., 2010, Effects of different arbuscular mycorrhizal fungi (AMF) species on some bean (Phaseolus vulgaris L.) cultivars grown in salty conditions, Afr. J. Agric. Res., 5 (24), 3408-3416.
  • 24. Powell, C. L., 1981, Effect of inoculum rate on mycorrhizal growth responses in pot-grown onion and clover, Plant Soil, 62 (2), 231-239.
  • 25. Demir, S., Akkopru, A., Chincholkar, S. ve Mukerji, K., 2007, Use of arbuscular mycorrhizal fungi for biocontrol of soilborne fungal plant pathogens, Biological control of plant diseases, 17-46.
  • 26. Muok, B. O. ve Ishii, T., 2006, Effect of arbuscular mycorrhizal fungi on tree growth and nutrient uptake of Sclerocarya birrea under water stress, salt stress and flooding, J Jpn Soc Hortıc Scı, 75 (1), 26-31.
  • 27. Satir, N. Y., Ortas, I. ve Satir, O., 2016, The influence of mycorrhizal species on sour orange (Citrus aurantium L.) growth under saline soil conditions, PJAR, 53 (2), 399-406.
  • 28. Türkmen, Ö., Şensoy, S., Dursun, A. ve Demir, S., 2005, Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions, J Biol Sci, 5 (5), 568-574.
  • 29. Fritz, M., Jakobsen, I., Lyngkjær, M. F., Thordal-Christensen, H. ve PonsKühnemann, J., 2006, Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani, Mycorrhiza, 16 (6), 413-419.
  • 30. Maboko, M. M., Bertling, I. ve Du Plooy, C. P., 2013, Effect of Arbuscular Mycorrhiza and Temperature Control on Plant Growth, Yield, and Mineral Content of Tomato Plants Grown Hydroponically, HortScience, 48 (12), 1470- 1477.
  • 31. Farahani, H. A., Lebaschi, M. H. ve Hamidi, A., 2008, Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander, ANAS, 2 (2), 55-60.