Zor İşlenen Parçaların Ön Isıtmalı İşlenmesi

Isıl destekli talaşlı imalatta, işlemesi zor (sert) malzemeler dışarıdan bir ısı kaynağı kullanılarak, talaş derinliği kadar mesafede istenilen sıcaklığa kadar ısıtılarak işlenir. Bu yöntem, malzemenin bağ enerjisi ve akma mukavemetinin azalmasıyla sertliğin bir miktar düşmesini sağlar. Sert malzemelerin talaşlı imalatında, ön ısıtmalı işleme geleneksel işlemeye alternatif olarak geliştirilmiş ve metaller, seramik alaşımları, plastikler ve kompozitler dâhil çeşitli malzemelerin işlenmesinde kullanılabilmektedir. Ön ısıtmalı işleme geleneksel işleme yöntemlerine göre; takım aşınması, takım kırılması, tırlama, işleme sapmaları ve mekanik malzeme hasarları gibi kritik konularda, önemli avantaj kazandırmaktadır. Bu çalışmada, imalatı zor parçaların işlenmesindeki yüksek maliyet, kalite ve verimlilikteki olumsuzluklarla ilgili yapılan çalışmalar incelenerek elde edilen sonuçlar irdelenmiştir. Ön ısıtmalı işleme ile talaş kaldırma oranı arttıkça maliyetlerin düştüğü, kesme kuvvetlerinin küçüldüğü ve zor işlenen malzemelerin yüzey pürüzlülüğünün azaldığı belirlenmiştir[1]. Zor işlenen malzemelerde ısıl destekli talaşlı imalat yapılarak özgül kesme enerjileri, takım aşınma miktarı, malzeme yüzey pürüzlülüğü, kalıcı gerilmeler, talaş kaldırma oranı, talaş kaldırma mekanizması, işleme maliyeti ve yüzey tamlığına etkileri araştırılmıştır. Bahsedilen parametrelerle ilgili bulunan sonuçlar karşılaştırılmıştır.

Preheat Machining Of Hard Material Workpieces

Heat-assisted machining, hard machining materials using an external heat source, up to depth of cut is machined by heating up to the desired temperature. This method, yield strength of the material and reduction of bonding energy which helps reduce the amount of hardness. Machining of hard materials, pre-heating machining was developed as an alternative to the traditional machining, and metals, ceramics alloys, plastics and composites, including the machining of various materials can be used. According to the traditional machining methods of preheating machinings; tool wear, tool breakage, chatter, machining deviations and mechanical material damage as critical issues, gives a significant advantage. In this study, the high cost of machining of hard materials, quality, and productivity studies examining the obtained results are interpreted on negativity. Pre-heating machining costs decreased with increasing metal removal rate, surface roughness and cutting forces reduced [1]. Hard machined materials with heat-assisted machining spesific cutting forces, the amount of tool wear, material surface roughness, residual stresses, material removal rate, chip removal mechanism, the machining cost and surface flatness effect were investigated. On the parameters mentioned in the results were compared.

___

  • [1] F.E. Pfefferkorn, S. Lei, Y. Jeon, G. Haddad “A Metric For Defining The Energy Efficiency Of Thermally Assisted Machining” International Journal Of Machine Tools & Manufacture, 2009, s. 357– 365
  • [2] J. Paulo Davim “Machining: Fundamentals And Recent Advances”, 2008
  • [3] S.Sun, M. Brandt, M.S. Dargusch, “Thermally Enhanced Machining Of Hard-To- Machine Materials- _A Review”, International Journal Of Machine Tools And Manufacture, 2010, s.663-680
  • [4] K. Armitage, A/Prof.S. Masood, A/Prof. M. Brandt, C. Pomat, “Laser Assisted Machining Of HardTo-Wear Materials”, Industrial Research Institute Swinburne, Swinburne University Of Technology, 2002
  • [5] F. E. Pfefferkorn, F. P. Incropera, Y. C. Shin, “Heat Transfer Model Of Semi-Transparent Ceramics Undergoing Laser-Assisted Machining”, International Journal Of Heat And Mass Transfer, 2005, s.1999- 2012
  • [6] C.Y. Ho, M.Y. Wen, J.E. Ho, D.Y. Chen, “Temperature History For Cutting Of Ceramics Preheated By A CO2 Laser”, Journal Of Materials Processing Technology, 2007, s.525-531
  • [7] M.A. Lajis, A.K.M.N. Amin, A.N.M. Karim, H.C.D.M. Radzi And T.L. Ginta, “Hot Machining Of Hardened Steels With Coated Carbide Inserts”, American J. Of Engineering And Applied Sciences, 2009, s.421-427
  • [8] J. Goudhaman, “Experımental Investıgatıon Of Hot Machınıng Prosses Of Hıgh Manganese Steel Usıng Snmg-Carbıde Inserts By Desıgn Of Experıments Usıng Taguchı Method”, Bachelor Of Technology In Mechanical Engineering Thesis, Department Of Mechanical Engineering National Institute Of Technology Rourkela, 2007
  • [9] Yongho, P. Frank, “Effect Of Laser Preheating The Workpiece On Micro End Milling Of Metals” Journal Of Manufacturing Science And Engineering, 2008
  • [10] G. Chryssolouris, N. Anifantis, S. Karagiannis, “Laser Assisted Machining: An Overview”, Journal Of Manufacturing Science And Engineering , ASME, 1997, s.766-769
  • [11] L. Özler, A. İnan, C. Özel, “Theoretical And Experimental Determination Of Tool Life İn Hot Machining Of Austenitic Manganese Steel”, International Journal Of Machine Tools And Manufacture, 2001, s.163-172
  • [12] M. C. Anderson, Y. C. Shin, “Laser-Assisted Machining Of An Austenitic Stainless Steel: P550”, J. Engineering Manufacture, 2006, s. 2055-2067
  • [13] T. Özel, F. Pfefferkorn, “Pulsed Laser Assisted Micromilling For Die/Mold Manufacturing”, ASME, 2007
  • [14] W. Chang, C.P. Kuo,” Evaluation Of Surface Roughness İn Laser-Assisted Machining Of Aluminum Oxide Ceramics With Taguchi Method”, International Journal Of Machine Tools And Manufacture, 2007, s. 141-147
  • [15] K.P. Maity, P.K. Swain, “An Experimental İnvestigation Of Hot Machining To Predict Tool Life” 2008
  • [16] P.A.Rebro, Y.C. Shin, F.P. Incropera, “Desing Of Operating Conditions For Crackfree LaserAssisted Machinig Of Mullite”, International Journal Of Machine Tools And Manufacture, 2004, s.677- 694
  • [17] B.Yang, S.Lei, “Laser-Assisted Milling Of Silicon Nitride Ceramic: A Machinability Study”, International Journal Of Machine Tools And Manufacture, 2008, s.116-130
  • [18] P.A. Rebro, Y.C. Shin, F.P. Incropera, “Laser-Asisited Machining Of Reaction Sintered Mullite Ceramics”, Journal Of Manufacturing Science And Engineering, Vol 124, 2002, s.875-885
  • [19] J.W. Jung, C.M. Lee, “Cutting Temperature And Laser Beam Temperature Effects On Cutting Tool Deformation İn Laser- Assisted Machining”, Proceeding Of The İnternational Multi Conference Of Engineers And Computer Scientists, 2009
  • [20] S. Lei, Y. C. Shin, F. P. Incropera, “Experimental Investigation Of Thermo-Mechanical Characteristics İn Laser-Assisted Machining Of Silicon Nitride Ceramics”, Journal Of Manufacturing Science And Engineering, ASME, 2001, s.639-646
  • [21] N. Tosun, L. Özler, “A Study Of Tool Life İn Hot Machining Using Artificial Neural Networks And Regression Analysis Method”, Journal Of Materials Processing Technology, 2002, s.99-104
  • [22] P. Dumitrescu, P. Koshy, J. Stenekes, M.A. Elbestawi, “High-Power Diode Laser Assisted Hard Turning Of AISI D2 Tool Steel”, International Journal Of Machine Tools & Manufacture, 2006,s.2009- 2016
  • [23] G. Germain, J.L. Lebrun, T. Braham-Bouchnak, D. Bellett, S. Auger, “Laser-Assisted Machining Of Inconel 718 With Carbide And Ceramic İnserts”, International Journal Of Material Form, Springer, 2008, s.423-526
  • [24] M. Anderson, R. Patwa,Y.C. Shin, “Laser-Assisted Machining Of Inconel 718 With An Economic Analysis” International Journal Of Machine Tools And Manufacture, 2006, s.1879-1891
  • [25] Y. Wang, L. J. Yang, N. J. Wang, “An İnvestigation Of Laser-Assisted Machining Of Al2O3 Particle Reinforced Aluminum Matrix Composite”, Journals Of Material Processing Technology, 2002, s.268-272
  • [26] S. Skvarenina, Y.C. Shin, “Laser-Assisted Machining Of Compacted Graphite İron”, International Journal Of Machine Tools And Manufacture, 2006, s.7-17
  • [27] C.-W. Chang, C.-P. Kuo, “An İnvestigation Of Laser-Assisted Machining Of Al2O3 Ceramics Planing”, International Journal Of Machine Tools And Manufacture, 2007, s.452-461
  • [28] Y. Tian, B. Wu, M. Anderson, Y. C. Shin, “Laser-Assisted Milling Of Silicon Nitride Ceramics And Inconel 718”, Journal Of Manufacturing Science And Engineering, ASME, 2008
  • [29] A.K.M.N. Amin, M. Abdelgadir, “The Effect Of Preheating Of Work Material On Chatter During End Milling Of Medium Carbon Steel Performed On A Vertical Machining Center (VCM)”, ASME, 2003, s.674-680
  • [30] T.L. Ginta, A.K.M.N. Amin, M.A. Lajis, A.N.M. Karim, H.C.D.M. Radz, “Improved Tool Life İn End Milling Ti-6Al-4V Through Workpiece Preheating”, European Journal Of Scientific Research, 2009, s.384-391
  • [31] T.L. Ginta, A.K.M.N. Amin, “Machinability Improvement in End Milling Titanium Alloy TI-6AL- 4V”, SEGi Review, 2010, s.25-32