Zırh Tasarımında Kullanılan Kompozit Malzemelerin Deformasyon Karakteristiğinin Araştırılması

Askeri ve sivil hayattaki korunma ihtiyacının sonucu olarak balistik koruyucu giysiler ortaya çıkmıştır. İlk zamanlarda metal ve metal türevli malzemelerden üretilen zırhlar, yüksek mukavemetli kumaşların geliştirilmesiyle birlikte yerini bu kumaşlardan üretilmiş koruyucu giysilere bırakmıştır. Günümüzde yüksek mukavemetli kumaşlar balistik uygulamaların yanı sıra havacılık, denizcilik ve taşıt teknolojisi gibi birçok alanda da kullanılmaktadır. Balistik koruyucu giysilerde balistik performansı belirleyen mekanik özellikler yüksek mukavemet, yüksek Elastisite modülü ve düşük yoğunluktur. Bütün bu özellikler balistik uygulamalarda kompozit malzemeler sayesinde bir arada sağlanabilmektedir. Bu sebeple balistik kompozit malzemelerin modellenmesi, tasarımı ve geliştirilmesiyle ilgili çalışmalar günümüzde birçok araştırmacı tarafından incelenmektedir. Bu sebeple bu çalışmaların incelenmesi bir araya getirilerek ileride yapılacak çalışmalara temel oluşturması açısından oldukça önemlidir.

Investigation of Deformation Characteristics of Composite Materials Used in Armor Design

Military and civilian life as a result of the need for protection has emerged ballistic protective clothing. In earlier times derived materials produced from metal and metal shields, with development of high-strength fabric replaced have been replaced by protective clothing made from these fabrics. Nowadays, the application of high-strength ballistic fabrics, as well as aviation, marine and vehicle technology is also used in many fields such as. Determining the mechanical properties of ballistic performance in ballistic protective clothing high strength, high modulus of elasticity and density is low. Thanks to these features composite materials in ballistic applications may be provided together. For this reason, ballistic composite material modeling, design and development work related to the present is studied by many researchers. For this reason, an examination of these studies as a basis for future studies combining is very important in terms of.

___

  • 1. Candan, C., 2005, “Zırh Teknolojilerindeki Gelişmeler”, Zırh Teknolojileri Semineri, Ankara, Milli Savunma Bakanlığı Arge ve Teknoloji Daire Başkanlığı.
  • 2. Öztürk, M., E., Demir, A., 2011, “Bitirme Tezi, Kompozit Malzemelerin Balistik Davranışlarının İncelenmesi,” Sakarya Üniversitesi, Sakarya.
  • 3. Özgültekin, S.E., 2012, “Balistik Zırhlarda Kullanılan Kompozit Malzeme Kombinasyonlarının İncelenmesi”, Yüksek Lisans Bitirme Tezi, Sakarya Üniversitesi Fen Bilimleri Enstütüsü, Sakarya.
  • 4. Cantwell, W.J., Morton, J., 1991, “The İmpact Resistance Of Composite Materials A Review”, Composites, 22, 347–362.
  • 5. Cavallaro, P.V., 2011, “Soft Body Armor: An Overview Of Materials, Manufacturing, Testing, And Ballistic Impact Dynamics,” Naval Undersea Warfare Center Division Newport.
  • 6. Kirkwood, K., Kirkwood, J., Wetzel, E.D., Lee, Y.S., Wagner,N.J., 2004, “Yarn Pull-Out As A Mechanism For Dissipating Ballistic İmpact Energy in Kevlar KM-2”, Fabric-Part I: Quasi-Static Characterization Of Yarn Pull-Out, Text. Res. J., 74, 920.
  • 7. Demir, T., 2008, “Metal Ve Katmanlı Zırh Malzemelerin 7,62 mm’lik Zırh Delici Meriler Karşısında Balistik Başarımlarının İncelenmesi,” Yüksek Lisans, Tobb Ekonomi Ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 8. Wall, J.W., 2002, “ An Investıgatıon Of The Ballıstıc Impact Resıstance Of Modıfıed 2x1, Four- Step, Three-Dımensıonally Braıded Composıtes Wıth Axıal Reınforcement”, Master Of Science,Graduate Faculty Of North Carolina State University, Carolina.
  • 9. F. Ko and A. Geshury, Textile Preforms for Composite Materials Processing, Advanced Materials and Processes Information Analysis Center, AMPT-19, August 2002.
  • 10. Csukat, G.F., 2006, “A Study On The Ballistic Performance Of Composites”, Macromol Symposia, 239, 217–226.
  • 11. Wang, H., Xie, H., Hu, Z., Wu, D., Chen,P., 2012, “The influence of UV radiation and moisture on the mechanical properties and micro-structure of single Kevlar fibre using optical methods”, Polymer Degradation and Stability,97, 1755-1761.
  • 12. Nilakantan, G., 2013, “Filament-Level Modeling Of Kevlar Km2yarns For Ballistic İmpact Studies”, Composite Structures, 104, 1–13.
  • 13. Karahan, G., 2008, “Balistik Yapılarda Balistik Performansı Etkileyen Parametrelerin İncelenmesi”, Tekstil Teknolojileri Dergisi, 3, 51-58.
  • 14. Iannucci, L., Pope, D., 2011, “High Velocity İmpact And Armour Design”, Express Polymer Letters, 5, 262–272.
  • 15. Yang, H.H., Kevlar Aramid Fiber. John Wiley & Sons. 1993.
  • 16. Yang, D., 2011, “ Design, Performance And Fit Of Fabrics For Female Body Armour”, The Degree Of Doctor Of Philosophy, Faculty Of Engineering And Physical Sciences.
  • 17. Bunsell , A.R., 1988, “Fibre Reinforcements For Composite Materials”, Elsevier Science Publishers.
  • 18. DuPont Advanced Fiber Systems (aramid): http://www2.dupont.com/Kevlar.
  • 19. Chang, K.K., “Aramid Fibers”, Asm Handbook – Volume 21: Composites, Asm International, 2001.
  • 20. Alomari A., Aldajah S., Hayek S., Moustafa A.K., Haik,Y., 2013, “Experimental İnvestigation Of The Low Speed İmpact Characteristics Of Nanocomposites,” Materials And Design 47, 836–841.
  • 21. Man-Wai Ho, Chun-Ki Lam, Kin-tak Lau, Dickon H.L. Ng, David Hui, 2006 “Mechanical properties of epoxy-based composites using nanoclays,” Composite Structures 75,415–421.
  • 22. Derombise A.G., Lae Titia Vouyovitch Van Schoors A, Davies, P., 2009, “Degradation Of Technora Aramid Fibres İn Alkaline And Neutral Environments,” Polymer Degradation And Stability 94,1615–1620.
  • 23. Mercier J.-P., Mare´ Chal E. Chimie Des Polyme` Res. Presses Polytechniques Et Universitaires Romandes, Editor. 1993: 393–395.
  • 24. Liu, S., Wang,J.,Wang, Y., Wang, Y.,2010, “Improving The Ballistic Performance Of Ultra High Molecular Weight Polyethylene Fiber Reinforced Composites Using Conch Particles,” Materials And Design, 31,1711–1715.
  • 25. Deng, M., Latour, R.A., Ogale, A.A., Shalaby, S.W., 1997, “Study Of Creep Behavior Of Ultra- High-Molecular-Weight Polyethylene Systems”, Journal Biomed Mater Res.” 40(2), 214-23.
  • 26. Boussu, F., 2010, “The use of warp interlock fabric inside textile composite protection against ballistic impact”, Textile Research Journal ,81(4), 344–354.
  • 27. Xiaoyan L., Weidong Y.,2005, “Evaluation Of The Tensile Properties And Thermal Stability Of Ultrahigh-Molecular-Weight Polyethylene Fibers”, Journal Of Applied Polymer Science, 97, 310–315.
  • 28. Beckwith, S.W., 2009, “Composites Reinforcement Fibers: II - The Aramid And Polyethylene Families”, Sampe Journal, 45, No. 6, November/December 2009.
  • 29. DMS,Dyneema(polyethylene): http://www.dsm.com/en_US/html/hpf/home_dyneema.htm
  • 30. Hongtao, L., Hongmin, J., Xuemei, W., 2013, “Tribological Properties Of Ultra-High Molecular Weight Polyethylene At Ultra-Low Temperature”, Cryogenics, 58 1–4.
  • 31. Sreekanth, P.S.R., Kanagaraj, S., 2013, Restricting the ageing degradation of the mechanical properties of gamma irradiated UHMWPE using MWCNTs, Journal of the mechanical behavior of biomedical metarials, 21, 57-66.
  • 32. Wang Y., Cheng, R., Liang, L., Wang, Y., 2005,“Study On The Preparation And Characterization Of Ultra High Molecular Weight Polyethylene–Carbon Nanotubes Composite Fiber”, Composite Science Technoloji, 65, 793–7.
  • 33. Ruan, S., Gao, P., Yu, T., 2006 “ Ultra-Strong Gel-Spun Uhmwpe Fibers Reinforced Using Multiwalled Carbon Nanotubes” Polymer 47,1604–11.
  • 34. Sikkema, D.J., Northolt, M.G., Pourdeyhimi, B., 2003, “Assessment Of New High-Performance Fibers For Advanced Applications”, Mrs Bulletin, 28. 579-584.
  • 35. Beheraa B.K., Dasha, B.P., 2011, “An Experimental İnvestigation İnto Structure And Properties Of 3D-Woven Aramid And PBO Fabrics”, The Journal Of The Textile Institute, 104, 1337–1344.
  • 36. Zhai, H., Euler, A., 2005, “Material Challenges For Lighter-Than-Air Systems İn High Altitude Applications,” 5th Aıaa Aviation Technology, Integration And Operations Conference.
  • 37. O’neil, J.M., 2006, “Factors Contributing To The Degradation Of Poly(P-Phenylene Benzobisoxazole) (PBO) Fibers Under Elevated Temperature And Humidity Conditions,” Masters Thesis, Texas A&M University.
  • 38. Seely, L., Zimmerman, M., Mclaughlin, J., 2004, “The Use Of Zylon Fibers İn Uldb Tendons,” Advances İn Space Research, 33,10, 1736-1740.
  • 39. X. Hu And A.J. Lesser, Post-Treatment Of Poly-P-Phenylenebenzobisoxazole (Pbo) Fibers Using Supercritical Carbon Dioxide, University Of Massachusetts, (Http://Www.Policeone.Com/Policeone/Data/İmages/Upload/Posttreatmentpbo.Pdf)
  • 40. Zhang, C., Huang, Y., Yuan,W., Zhang, J., 2011, “UV Aging Resistance Properties of PBO Fiber Coated with Nano-ZnO Hybrid Sizing”, Journal of Applied Polymer Science, 120, 2468–2476.
  • 41. Chen, L., Hu, A.Z., Liua, A.,L., Huang, Y., 2013, “A Facile Method To Prepare Multifunctional Pbo Fibers: Simultaneously Enhanced İnterfacial Properties And UV Resistance”, This Journal is The Royal Society Of Chemistry 3, 24664–24670.
  • 42. Zhou C., Wang S., Zhang Y., Zhuang Q., Han Z.,2008, “ In Situ Preparation And Continuous Fiber Spinning Of Poly(P-Phenylene Benzobisoxazole) Composites With Oligo-Hydroxyamide- Functionalized Multi-Walled Carbon Nanotubes” Polymer, 49,2520–30.
  • 43. Chin, J., Forster, A., Clerici, C., Sung, L., Oudina, M., Rice, K., 2007, “Temperature and humidity aging of poly( p-phenylene-2,6-benzobisoxazole) fibers: Chemical and physical characterization”, Polymer Degradation and Stability, 92, 1234-1246.
  • 44. Ma¨der, A., Melcher, S., Liu, J.W., Gao, S.L., Bianchi, A.D., Zherlitsyn, S., Wosnitza, J., 2007, “Adhesion of PBO fiber in epoxy composites”, Journal Material Science, 42, 8047–8052.
  • 45. Frederick T. Wallenberger, James C. Watson, Hong Li, Ppg Industries, Inc.,2001, 2001 Asm International. All Rights Reserved. Asm Handbook, Vol. 21: Composites (#06781g)
  • 46. Walling, S.J., 1985, “S-2 Glass Fiber: Its Role İn Military Applications, International Conference On Composite Materials”, Metallurgical Society Of Aıme, 443-456
  • 47. Lane, R.A., 2005, “High Performance Fibers For Personnel And Vehicle Armor Systems”, Amptiac Quarterly, 5, 1-10.
  • 48. Shin, H., Erlich, D., Simons, J., Shockey, D., 2006, “ Cut Resistance Of High-Strength Yarns”, Textile Research Journal, 76(8), 607–613.
  • 49. Tabiei, A., Nilakantan, G., 2008, “Ballistic Impact Of Dry Woven Fabric Composites: A Review”, Applied Mechanics Reviews, 61, 010801-12.
  • 50. N. V. David, X.-L. Gao, J. Q. Zheng, 2009, “Ballistic Resistant Body Armor: Contemporary And Prospective Materials And Related Protection Mechanisms”, Applied Mechanics Reviews, 62, 050802- 20.
  • 51. Roylance, D., 1980, “Stress Wave Propagation İn Fibers-Effects Of Cross Overs,” Fibre Science Technoloji, 13,5, 385–395.
  • 52. Lin, L., Bhatnagar, A., 1992, “Ballistic energy absorpstion of composite-III”, 24th international SAMPE technical conference, T291-T306. 53. Segal, C., 1991, “High perfpormance organic fibers,fabrics and composite for soft and hard armor application”, 23rd international SAMPE technical conference,651-660.
  • 54. Field, J. E., Sun, Q., 1990, “A High Speed Photographic Study Of Impact On Fibers And Woven Fabrics,” Proceedings Of The 19th International Congress On High Speed Photography And Photonics, Part 2, 703–712.
  • 55. Jovicic, J.M., 2003, “Numerical Modeling And Analysis Of Static And Ballistic Behavior Of Multi-Layered/Multiphase Composite Materials Using Detailed Microstructural Discretization”, Drexel University, Pennsylvania, 181.
  • 56. Zhang, A.D., Sun, Y.A., Chen L., Zhang, S., Pan, N., 2014, “Influence Of Fabric Structure And Thickness On The Ballistic İmpact Behavior Of Ultrahigh Molecular Weight Polyethylene Composite Laminate”, Materials And Design, 54, 315–322.
  • 57. Wenfeng Shi A , Hong Hu B , Baozhong Sun A & Bohong Gu, Energy Absorption Of 3d Orthogonal Woven Fabric Under Ballistic Penetration Of Hemispherical‐Cylindrical Projectile, The Journal Of The Textile Institute Vol. 102, No. 10, October 2011, 875–889.
  • 58. Qian Zhang, Xiaomeng Fang, Xiaojuan Sun, Baozhong Sun, And Yiping Qiu,2014, Comparison Of The Mechanical Properties Between 2d And 3d Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites, Polymers & Polymer Composites, Vol. 22, No. 2, 2014.
  • 59. Behera, B.K., Dash, B.P., 2013, “ An experimental investigation into structure and properties of 3D-woven aramid and PBO fabrics”, The Journal of The Textile Institute, 104, No. 12, 1337–1344.
  • 60. Naik, N.K. , Doshi, A.V., 2008 “ Ballistic impact behaviour of thick composites: Parametric studies”, Composite Structures, 82 ,447–464.
  • 61. C.T. Lim, V.B.C. Tan, C.H. Cheong,2002, “Perforation Of High-Strength Double-Ply Fabric System By Varying Shaped Projectiles”, International Journal Of Impact Engineering, 27, 577–591.
  • 62. Tan, V.B.C., Lim, C.T., Cheong, C.H., 2003, “Perforation Of High-Strength Fabric By Projectiles Of Different Geometry”, International Journal Of Impact Engineering 28, 207–222
  • 63. Ulven A.C., Vaidya U.K., Hosur, M.V., 2003, “Effect Of Projectile Shape During Ballistic Perforation Of Vartm Carbon/Epoxy Composite Panels”, Composite Structures 61, 143–15.
  • 64. Babua, M.G., Velmurugana, R., Gupta, N.K., 2006, “Energy-Absorption Capability Of Thin Laminates Subjected To Heavy-Mass Projectile İmpact Of Varying Nose Geometries”, International Journal Of Crashworthiness ,13(3), 237–246.
  • 65. Jordan, J.B., Naito, C.J., 2014, “An Experimental İnvestigation Of The Effect Of Nose Shape On Fragments Penetrating GFRP”, International Journal Of Impact Engineering, 63, 63-71.
  • 66. Nilakantan A, Eric D. Wetzel D, Travis A. Bogetti D, John W. Gillespie Jr., 2013, “A Deterministic Finite Element Analysis Of The Effects Of Projectile Characteristics On The İmpact Response Of Fully Clamped Flexible Woven Fabrics”, Composite Structures, 95, 191–201.
  • 67. Nilakantan, G., Gillespie J.W., 2012, “Balistic impact modelling of woven fabrics considering yarn strength, friction, projectile impact location and fabric boundary conditon effect”, Composite Structure, 94, 3624-3634.
  • 68. Choi, W.M., Kwon, T.S., Jung, H.S., Kim, J.S., 2012, “Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion tube”, International Journal of Crashworthiness, 17(6), 621–629.
  • 69. Park, J.L., Chi, Y.S., Hahn, M.H., Kang, T.J. , 2012, “Kinetic Dissipation İn Ballistic Tests Of Soft Body Armors”, Experimental Mechanics, 52,1239–1250.
  • 70. Karahana, M., Kus, A., Eren, R., 2008, “An İnvestigation İnto Ballistic Performance And Energy Absorption Capabilities Of Woven Aramid Fabrics”, International Journal Of Impact Engineering 35, 499–510.
  • 71. Sabet, A., Fagih, N., Beheshty, M.H., 2011, “Effect of reinforcement type on high velocity impact response of GRP plates using a sharp tip projectile”, International Journal of Impact Engineering, 38, 715-722.
  • 72. Ha-Minh, C., Boussu, F., Kanit, T., Crépin, D., Imad, A., 2012, “Effect Of Frictions On The Ballistic Performance Of A 3d Warp Interlock Fabric: Numerical Analysis”, Appl Compos Mater, 19, 333–347.
  • 73. Duan, Y., Keefe, M., Bogetti, T.A., Cheeseman, B.A., 2005, “Modeling The Role Of Friction During Ballistic İmpact Of A High-Strength Plain-Weave Fabric”, Composite Structures 68,331–337.
  • 74. Shim, V.P.W., Guo, Y.B., Tan, V.B.C., 2012, “Response Of Woven And Laminated High- Strength Fabric To Oblique İmpact”, International Journal Of Impact Engineering 48, 87-97.
  • 75. Iqbal, M.A., Diwakar, A., Rajput A., Gupta, N.K., ,2012, “Influence Of Projectile Shape And İncidence Angle On The Ballistic Limit And Failure Mechanism Of Thick Steel Plates”, Theoretical And Applied Fracture Mechanics 62, 40–53.
  • 76. Nilakantan, G., Nutt, S., 2014, “Effects Of Clamping Design On The Ballistic İmpact Response Of Soft Body Armor”, Composite Structures 108, 137–150.
  • 77. Tran, P., Ngo, T., Yang, E.C., Mendis, P., Humphries, W., 2014, “Effects of architecture on ballistic resistance of textile fabrics: Numerical study”, International Journal of Damage Mechanics, 23(3), 359–376.
  • 78. Hogg, P.J., Composites for Ballistic Applications, Journal of Composites Processing, CPA, Bromsgrove U.K., March 2003,(http://www.composites-proc-assoc.co.uk/view.php?pid =24)
  • 79. Zheng, D., Binienda, W.K., Cheng, J., Straniszewoki, M., 2006, “Numerical Modelling Of Friction Effects On The Ballistic İmpact Response Of Single-Ply Tri-Axial Braided Fabric”, 9th İnternational LS-DYNA Users Conferance.
  • 80. Holmes, G. A., Snyder, C. R., Rıce, K., 2006, “Review Ballistic fibers: A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure”, Journal Material Science, 41,4105–4116.
  • 81. Mitrevski, T., Marshall, I.H., Thomson, R., 2006, “The influence of impactor shape on the damage to composite laminates”, Composite Structures, 76, 116-122.
  • 82. Johnson GR, Holmquist TJ. In: Meyers MA, Murrm LE, Staudhammer KP, editors. A computational constitutive model for brittle materials subjected the large strains, high strain rates, and high pressures. New York: Marcel Dekker Inc; 1992. p. 1075-81.
  • 83. Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. In: High pressure Science and technology-1993. New York: American Institute of Physics; 1994. p. 981- 4.
  • 84. Daniel Bürger, Alfredo Rocha de Faria , Sérgio F.M. de Almeida, Francisco C.L. de Meloa, Maurício V. Donadon 2012, “Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours”, International Journal of Impact Engineering 43, 63-77.
  • 85. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rate and high temperature. In: Proceedings of the 7th international symposium on ballistics; 1983 [The Hague, The Netherlands].
  • 86. Holmquist, T.A., Templeton,W.D., Bishnoi, K.D., 2001, “Constitutive modeling of aluminum nitride for large strain,high-strain rate, and high-pressure applications”, International Journal of Impact Engineering 25, 211-231.
  • 87. Wang, Y., Yang, Z., 2008, “Finite element model of erosive wear on ductile and brittle materials”, Wear, 265, 871–878.
  • 88. Tasdemirci, A., Hall, I.W., 2007, “Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates”, International Journal of Impact Engineering ,34 , 189–204. 89. Krishnan, K., Sockalingam, S., Bansal, S., Rajan,S.D.,2010, “Numerical simulation of ceramic composite armor subjected to ballistic impact”, Composites: Part B,41, 583–593.
  • 90. Quan, K., Clegg, R.A., Cowler, M.S., Birnbaum, N.K., Hayhurs, C.J., 2006, “Numerical simulation of long rods impacting silicon carbide targets using JH-1 model”, International Journal of Impact Engineering,33, 634–644.
  • 91. Dorogoy, A., Rittel,D., “Technical note: Determination of the Johnson-Cook material parameters using the SCS specimen” Mechanical Engineering Department, Technion – Israel Institute of Technology.
  • 92. Damith, M., Muneeb, A., Tuan, N., Jinghan, L., Priyan, M., Dong, R., 2013, “out of plane impact resistance of alüminium plates subjected to low velocity impact” materials and design, vol 50, pp 413- 426.