Darbe ve ortam şartlarının kompozit malzemelerin mekanik özelliklerine etkileri

Tüm mühendislik malzemelerinin çalıstıkları birçok yerde darbelere maruz kaldığı bilinmektedir. Bu darbeler gerek parçanın görevinin özelliği, gerekse dısarıdan gelen etkiler seklindedir. Yine tüm malzemeler değisken sıcaklıklara maruz kalmaktadırlar. Geleceğin malzemesi olarak tanımlanan kompozit malzemeler yavas yavas birçok bilinen metalin yerini almaktadır ancak yeni bir teknoloji ürünü oldukları için darbe ve ortam sartlarına karsı davranısları metaller kadar yoğun incelenmemis ve her alanda deneyler yapılmamıstır. Bu çalısmada, daha önce yapılmıs çalısmaların yardımıyla kompozit malzemelerden karbon fiber, kevlar(aramid) ve cam elyaf takviyeli kompozitlerin mekanik özelliklerine darbenin ve sıcaklık, nem ve tuz gibi ortam sartlarının etkileri incelenecektir.

Effect of impact and environmental factors on the mechanical properties of composite materials

It is a known fact that all engineering materials are often subject to impact loads during service. These loads are either in the form of external effects or arises during the component’s duty. Materials may also be subject to varying temperatures. Composite materials, often defined as the materials of the future, are gradually replacing many conventional materials; on the other, these comparably new technology materials lack widespread knowledge on their impact behaviors and response to environmental conditions compared to metals since not enough scientific research and experimental work have been carried out. In this study, the effects of impact and environmental factors such as temperature, humidity and salinity on the mechanical properties of carbon fiber, kevlar and glass reinforced composites with the help of existing studies are being carried out.

___

  • 1. Sanjay, K. M., Composites Manufacturing Materials: Product, and Process Engineering, CRC Press Boca Raton London New York Washington, D.C.
  • 2. John, F. J., 1969, Composite Materials: The Coming Revolution, Airline Management and Marketing, pp 85,90,91.
  • 3. Robert, M. J., 1999, Mechanics of Composite Materials, Second Edition, Taylor and Francis, USA
  • 4. Daniel, I. M., Ishai, O., 1994, Engineering Mechanics of Composite Materials, New York: Oxford University pres
  • 5. Poe, C. C., Portnova, M. A., Sankar, B. V., Jackson, W. C., 1991, Comparison of Impact Results For Several Polymeric Composites over a Wide Range of Low Impact Velocities, First NASA advanced Composites Technology Conference, NASA Conference Publication 3104, Part 1
  • 6. Short, G. J., Guild, F. J., Pavier, M. J., 2002, Post-Impact Compressive Strength of Curved GFRP Laminates, Composites Part A ;33:1487–95
  • 7. Dilek, T., 2001, Uçaklarda Yorulma, Anadolu Üniversitesi Sivil Havacılık Yüksekokulu, Mühendis & Makine, http://www.mmo.org.tr/muhendismakina/arsiv/2001/mayis/havacilik.htm
  • 8. Lal, K. M., 1982, Prediction of residual Tensile strength of Transversely Impacted Composite laminates, Research in structural and solid mechanics-1982, NASA conference publication 2245
  • 9. Arnold, W. S., Madjidi, S., Marshall, I. H., Robb, M. D., 1993, Low velocity impact of inclined CSM composite laminates, In: Proceedings of the International Conference on Advanced Composite Materials, The Minerals and Materials Society 617–22
  • 10. Dawn, C. J., 1992, Effect of Low Speed Impact Damage and Damage Location on Behavior of Composite Panels, Langley Research Center, Hampton, Virginia, USA, NASA Technical Paper 3196
  • 11. Corum, J. M., Battiste, R. L., Ruggles-Wrenn, M. B., Low-energy impact effects on candidate automotive structural composites-Metals and Ceramics Division, Oak Ridge National Laboratory1, Oak Ridge, TN 37831-8051, USA
  • 12. Aaron, H., Amin, S. K., Mohammad, M., Reza, N. J., Temperature Effects on the Impact Behavior of Fiberglass and Fiberglass/KevlarSandwich Composites, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102, USA
  • 13. Levin, K., 1986, Effect of Low Velocity Impact on Compression Strength of Quasi-Isotropic Laminate, In: Proceedings of American Society for Composites: First Technical Conference, Technomic, Lancaster, PA; 313–25
  • 14. Son, K. H., Kwon, Y. J., 2001, Effects of Temperature on Impact Damages in CFRP Composite Laminates, Composites Part B;32: 669–82.
  • 15. Asad, A. K., 2004, The Effect of Testing Temperature and Volume Fraction on Impact Energy of Composites, Department of Mechanical Engineering, Faculty of Engineering, IIUM International University Malaysia, 53100 Gombak, Malaysia
  • 16. Amin, S. K., Reza, B., Mohammad, M., The Role of Temperature on Impact Properties of Kevlar/Fiberglas Composite Laminates, Reza Nakhaei-Jazar Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105, USA
  • 17. Go´mez-del Rı´o, T., Zaera, R., Barbero, E., Navarro, C., 2005, Damage in CFRPs due to Low Velocity Impact at Low Temperature, Composite Part B:36 (1): 41–50
  • 18. Gellert, E. P., Seawater Immersion Ageing of Glass-Fibre Reinforced Polymer Laminates For Marine Applications, D.M. Turkey, DSTO, Aeronautical and Maritime Research Laboratory, Maritime Platforms Division, P.O. Box 4331, Melbourne, Victoria 3001, Australia
  • 19. “Çöl iklimi sartları” http://en.wikipedia.org/wiki/Desert