Görüntü Korelasyon Tekniği Kullanılarak ABS 3B Baskıların Kayma Modülü Analizi

Üç boyutlu (3B) baskıların kullanım alanları arttıkça, bu baskıların özelliklerini ve bu özellikleri etkileyen faktörleri anlamak çok önem taşımaktadır. 3B yazdırılan parçaların malzeme özellikleri, bunları yazdırmak için kullanılan ham malzemelerin özellikleriyle eşdeğer değildir. 3B baskının doğası gereği farklı matris yapısı ve baskı yönleri parçaların anizotropisine neden olur. Bu makale, kesme özelliklerinin anizotropisini belirlemek için akrilonitril bütadien stiren (ABS) 3B baskılı parçaların mekanik karakterizasyonu için deneysel teknikleri ve sonuçları sunmaktadır. Fiber oryantasyonunun üç boyutlu basılmış parçaların mekanik özellikleri üzerindeki etkisi, [±45] yatay ve dikey olarak basılan numunelerle incelenmiştir. Numunelerin tam alan gerilimini ölçmek için Dijital Görüntü Korelasyon Hesaplama (DGK) yönteminden yararlanılırken evrensel bir test makinesinde yüklemeye tabi tutuldu. İnceleme sonuçlarında yatay numuneler dikey numunelere göre % 30 daha yüksek kesme mukavemeti gösterdiler.

Shear Modulus Analysis of Abs 3D Prints Using Image Correlatıon Technique

As the application areas of three-dimensional (3D) printing increase, it is very important to understand the characteristics of these prints and the factors affecting these features. The material properties of 3D-printed parts are not equivalent to the properties of the raw materials used to print them. Due to the nature of 3D printing, different microstructures and printing directions cause anisotropy in parts. This study presents experimental techniques and results for the mechanical characterization of Acrylonitrile Butadiene Styrene 3D-printed parts to determine the anisotropy of shear properties. The effect of fiber orientation on the mechanical properties of 3D printed parts was investigated with samples printed horizontally and vertically at ±45°. The samples were investigated under load using a universal testing machine while using the Digital Image Correlation Calculation method to measure the full field strain. In the test results, horizontal samples showed 30% higher shear strength than vertical samples.

___

  • 1. Abanto-Bueno, J. and Lambros, J., 2002. Investigation of crack growth in functionally graded materials using digital image correlation. Engineering Fracture Mechanics, 69(14-16), pp.1695-1711.
  • 2. Ahn, S.H., Baek, C., Lee, S. and Ahn, I.S., 2003. Anisotropic tensile failure model of rapid prototyping parts-fused deposition modeling (FDM). International Journal of Modern Physics B, 17(08n09), pp.1510-1516.
  • 3. Ahn, S.H., Montero, M., Odell, D., Roundy, S. and Wright, P.K., 2002. Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal.
  • 4. Alimardani, M., Toyserkani, E. and Huissoon, J.P., 2007. Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process. Journal of laser applications, 19(1), pp.14-25.
  • 5. Antoniw, S., McCarthy, N., Pacey, E., Parkin, B. and Shelton, P., 2013. Additive manufacturing: opportunities and constraints. Royal Academy of Engineering, 1st edition, London.
  • 6. ASTM International, 2012. ASTM D5379/D5379M-12-Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.
  • 7. ASTM International, 2012. ASTM D7078/D7078M-05-Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.
  • 8. Azizi, A., Dourali, L., Zareie, S. and Rad, F.P., 2009, December. Control of vibration suppression of an smart beam by pizoelectric elements. In 2009 Second International Conference on Environmental and Computer Science (pp. 165-169). IEEE.
  • 9. Caminero, M.A., Lopez-Pedrosa, M., Pinna, C. and Soutis, C., 2013. Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Composites Part B: Engineering, 53, pp.76-91.
  • 10. Cantrell, J.T., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C. and Ifju, P.G., 2017. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23(4), pp.811-824.
  • 11. Devivier, C., Thompson, D., Pierron, F. and Wisnom, M.R., 2010. Correlation between full-field measurements and numerical simulation results for multiple delamination composite specimens in bending. In Applied Mechanics and Materials (Vol. 24, pp. 109-114). Trans Tech Publications Ltd.
  • 12. Devivier, C., Pierron, F. and Wisnom, M.R., 2012. Damage detection in composite materials using deflectometry, a full-field slope measurement technique. Composites Part A: Applied Science and Manufacturing, 43(10), pp.1650-1666.
  • 13. Dey, A. and Yodo, N., 2019. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3), p.64.
  • 14. Dudek, P.F.D.M., 2013. FDM 3D printing technology in manufacturing composite elements. Archives of metallurgy and materials, 58(4), pp.1415-1418.
  • 15. Hague, R., Campbell, I. and Dickens, P., 2003. Implications on design of rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), pp.25-30.
  • 16. Hague, R., Mansour, S. and Saleh, N., 2003. Design opportunities with rapid manufacturing. Assembly Automation, 23(4), pp.346-356.
  • 17. Bing, P. and Huimin, X., 2007. Full-field strain measurement based on least-square fitting of local displacement for digital image correlation method. Acta Optica Sinica, 27(11), p.1980.
  • 18. Kruth, J.P., Wang, X., Laoui, T. and Froyen, L., 2003. Lasers and materials in selective laser sintering. Assembly Automation, 23(4), pp.357-371.
  • 19. Laurin, F., Charrier, J.S., Lévêque, D., Maire, J.F., Mavel, A. and Nuñez, P., 2012. Determination of the properties of composite materials thanks to digital image correlation measurements. Procedia IUTAM, 4, pp.106-115.
  • 20. Noorani, R., 2006. Rapid prototyping: principles and applications. John Wiley & Sons.
  • 21. Park, J., Tari, M.J. and Hahn, H.T., 2000. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal.
  • 22. Pol, M.H., Zabihollah, A., Zareie, S. and Liaghat, G., 2013. EFFECTS OF NANO-PARTICLES CONCENTRATION ON DYNAMIC RESPONSE OFLAMINATED NANOCOMPOSITE BEAM. Mechanics, 19(1), pp.53-57.
  • 23. Sugavaneswaran, M. and Arumaikkannu, G., 2014. Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Materials & Design (1980-2015), 54, pp.779-785.
  • 24. West, A.P., Sambu, S.P. and Rosen, D.W., 2001. A process planning method for improving build performance in stereolithography. Computer-Aided Design, 33(1), pp.65-79.
  • 25. Yakovlev, A., Trunova, E., Grevey, D., Pilloz, M. and Smurov, I., 2005. Laser-assisted direct manufacturing of functionally graded 3D objects. Surface and Coatings Technology, 190(1), pp.15-24.
  • 26. Zareie, S., Zabihollah, A. and Azizi, A., 2011, April. Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators. In Behavior and Mechanics of Multifunctional Materials and Composites 2011 (Vol. 7978, pp. 495-500). SPIE.
  • 27. Zeng, W., Guo, Y., Jiang, K., Yu, Z., Liu, Y., Shen, Y., Deng, J. and Wang, P., 2013. Laser intensity effect on mechanical properties of wood–plastic composite parts fabricated by selective laser sintering. Journal of Thermoplastic Composite Materials, 26(1), pp.125-136.