Eklemeli İmalatla Üretilen Kafes Yapılar

Kafes yapılar, bir veya daha fazla tekrar eden birim hücreden oluşan, üç boyutlu yapılardır. Her bir hücre, içerisinde düğüm noktalarından birbirine bağlanan dikmelerden oluşur. Eklemeli imalat konusunda son yıllarda meydana gelen gelişmeler neticesinde, kafes yapılar üzerinde yapılan çalışmalar da artmış ve kafes yapıların havacılık, otomotiv, spor ve biomedikal sanayii gibi farklı alanlarda uygulanması üzerine yapılan araştırmalar hız kazanmıştır. Bu çalışmada, eklemeli imalat ile üretilen kafes yapıların uygulama alanları, çeşitleri, seçim kriterleri ve tasarım ile üretim arasında çıkan farklardan bahsedilecek ve ileriki çalışmalar konusunda detaylı bilgiler verilecektir.

___

  • Zhang, X.Z., Leary, M., Tang, H.P., Song, T., Qian, M. 2018. “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current Opinion in Solid State and Material Science, 22 (3): 75-99.
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissena, K., Schrooten, J., Kruth, J. P., Humbeeck, J. V. 2015. “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5: 77-84.
  • Nakajima, H. 2007. “Fabrication, properties and application of porous metals with directional pores”, Progress in Materials Science, 52 (7): 1091-1173.
  • Dallago, M., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M. 2019. “On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via Selective Laser Melting”, International Journal of Fatigue, 124: 348-360.
  • Rosa, F., Manzoni, S., Casati, R. 2018. “Damping behavior of 316L lattice structures produced by Selective Laser Melting”, Materials and Design, 160: 1010-1018.
  • Helou, M., Kara, S. 2018. “Design, analysis and manufacturing of lattice structures: an overview”, International Journal of Computer Integrated Manufacturing, 31 (3): 243-261.
  • Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M. 2019. “SLM lattice structures: Properties, performance, applications and challenges”, Materials and Design, 183: 108-137.
  • Hedayati, R., Sadighi, M. 2015. “Bird strike, an experimental, theoretical and numerical investigation”, Woodhead Publishing.
  • Gülcan, O. 2019. “Kuş çarpmaları ve uçaklara etkileri üzerine bir gözden geçirme çalışması”, Mühendis ve Makina, 60 (696): 192-220.
  • Ferro, C. G., Varetti, S., Pasquale, G. D., Maggiore, P. 2018. “Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process”, Materials Today Communications, 15: 185-189.
  • Zhou, H., Zhang, X., Zeng, H., Yang, H., Lei, H., Li, X., Wang, Y. 2019. “Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM”, Chinese Journal of Aeronautics, 32(7): 1727–1732.
  • Ho, J. Y., Leong, K. C., Wong, T. N. 2019. “Experimental and numerical investigation of forced convection heat transfer in porous lattice structures produced by selective laser melting”, International Journal of Thermal Sciences, 137: 276-287.
  • Murr, L. E. 2017. “Additive manufacturing of biomedical devices: an overview”, Materials Technology: Advanced Performance Materials, 33 (1): 57-70.
  • Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y. M. 2016. “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review”, Biomaterials, 83: 127-141.
  • Burton, H. E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., Shepherd, D. E. T., Attallah, M. M., Grover, L. M., Cox, S. C. 2019. “The design of additively manufactured lattices to increase the functionality of medical implants”, Materials Science & Engineering C, 94: 901-908.
  • Avila, J. D., Bose, S., Bandyopadhyay, A. 2018. “Additive manufacturing of titanium and titanium alloys for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, 325-343.
  • Tang, H. P., Zhao, P., Xiang, C. S., Liu, N., Jia, L. 2018. “Ti-6Al-4V orthopedic implants made by selective electron beam melting”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, 239-249.
  • Marin, E., Fusi, S., Pressacco, M., Paussa, L., Fedrizzi, L. 2010. “Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium”, Journal of the Mechanical Behavior of Biomedical Materials, 3(5): 373-381.
  • Alabort, E., Barba, D., Reed, R. C. 2019. “Design of metallic bone by additive manufacturing”, Scripta Materialia, 164: 110-114.
  • Fousová, M., Vojtěch, D., Kubásek, J., Jablonská, E., Fojt, J. 2017. “Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process”, Journal of the Mechanical Behavior of Biomedical Materials, 69: 368-376.
  • Li, X., Wang, C., Zhang, W., Li, Y. 2009. “Fabrication and characterization of porous Ti-6Al-4Vparts for biomedical applications using electron beam melting process”, Materials Letters, 63: 403-405.
  • Dumas, M., Terriault, P., Brailovski, V. 2017. “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials”, Materials & Design, 121: 383-392.
  • Yuan, L., Ding, S., Wen, C. 2019. “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review”, Bioactive Materials, 4: 56-70.
  • Panesar, A., Abdi, M., Hickman, D., Ashcroft, I. 2018. “Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing”, Additive Manufacturing, 19: 81-94.
  • Salonitis, K., Chantzis, D., Kappatos, V. 2017. “A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter”, International Journal of Advanced Manufacturing Technology, 90: 2689-2701.
  • Tang, Y., Zhou, Y., Hoff, T., Garon, M., Zhao, Y. F. 2016. “Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process”, Materials Science and Technology, 32 (7): 648-656.
  • Hasan, R. 2013. “Progressive collapse of titanium alloy micro-lattice structures manufactured using selective laser melting”, PhD Thesis, University of Liverpool, United Kingdom.
  • Luxner, M. H., Woesz, A., Stampfl, J., Fratzl, P., Pettermann, H. E. 2009. “A finite element study on the effects of disorder in cellular structures”, Acta Biomaterialia, 5 (1): 381-390.
  • Rehme, O. 2010. “Cellular design for laser freeform fabrication”, Cuvillier Verlag, Gottingen, Germany.
  • Deshpande, V.S., Fleck, N.A., Ashby, M.F. 2001. “Effective properties of the octet-truss lattice material”, Journal of the Mechanics and Physics of Solids, 49 (8): 1747-1769.
  • Souza, J., Großmann, A., Mittelstedt, C. 2018. “Micromechanical analysis of the effective properties of lattice structures in additive manufacturing”, Additive Manufacturing, 23: 53-69.
  • Mazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., Brandt, M. 2017. “Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM)”, Laser Additive Manufacturing, Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 119-161.
  • Li, S.J., Xu, Q.S., Wang, Z., Hou, W.T., Hao, Y.L., Yang, R., Murr, L.E. 2014. “Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method”, Acta Biomaterialia, 10: 4537-4547.
  • Xu, S., Shen, J., Zhou, S., Huang, X., Xie, Y. M. 2016. “Design of lattice structures with controlled anisotropy”, Materials and Design, 93: 443-447.
  • Zhao, S., Hou, W. T., Xu, Q.S., Li, S.J., Hao, Y.L., Yang, R. 2018. “Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications”, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, 277-301.
  • Geng, L., Wu, W., Sun, L., Fang, D. 2019. “Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction”, International Journal of Mechanical Sciences, 157–158: 231–242.
  • Deshpande, V.S., Ashby, M.F., Fleck, N.A. 2001. “Foam topology bending versus stretching dominated architectures, Acta Materialia, 49 (6): 1035-1040.
  • Lord, E. A., Mackay, A. L. 2003. “Periodic minimal surfaces of cubic symmetry”, Current Science, 85(3): 346-362.
  • Suard, M. 2015. “Characterization and optimization of lattice structures made by electron beam melting”, PhD Thesis, Universite de Grenoble Alpes, France.
  • Sychov, M. M., Lebedev, L. A., Dyachenko, S. V., Nefedova, L. A. 2018. “Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology”, Acta Astronautica, 150:81-84.
  • Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., Hague, R. J. M. 2018. “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing”, Polymer, 152: 62-71.
  • Al-Ketan, O., Rowshan, R., Al-Rub, R. K. A. 2018. “Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials”, Additive Manufacturing, 19: 167-183.
  • Abueidda, D. W., Al-Rub, R. K. A., Dalaq, A. S., Lee, D. -W., Khan, K. A., Jasiuk, I. 2016. “Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces”, Mechanics of Materials, 95: 102-115.
  • Kapfer, S. C., Hyde, S. T., Mecke, K., Arns, C. H., Schroder-Turk, G. E. 2011. “Minimal surface scaffold designs for tissue engineering”, Biomaterials, 32: 6875-6882.
  • Rashed, M. G., Ashraf, M., Mines, R. A. W., Hazell, P. J. 2016. “Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications”, Materials & Design, 95:518-533.
  • Sing, S. L., Miao, Y., Wiria, F. E., Yeong, W. Y. 2016. “Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review”, Biomedical Science and Engineering, 2(11): 18-24.
  • Rashid, R. A. R., Mallavarapu, J., Palanisamy, S., Masood, S. H. 2017. “A comparative study of flexural properties of additively manufactured aluminium lattice structures”, Materials Today: Proceedings, 4: 8597-8604.
  • Dallago, M., Zanini, F., Carmignato, S., Pasini, D., Benedetti, M., 2018. “Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices”, Procedia Structural Integrity, 13: 161-167.
  • Bartolomeu, F., Fonseca, J., Peixinho, N., Alves, N., Gasik, M., Silva, F. S., Miranda., G. 2019. “Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants”, Journal of the Mechanical Behavior of Biomedical Materials, 99: 104-117.
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., Silva, F. S. 2020. “Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties”, Materials Science & Engineering C, 107: 110342.
  • Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., Cai, K. 2018. “Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes”, Journal of the Mechanical Behavior of Biomedical Materials, 84: 1-11.
  • Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D. 2014. “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials & Design, 55: 533-541.
  • Choy, S. Y., Sun, C. N., Leong, K. F., Wei, J. 2017. “Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density”, Additive Manufacturing,16: 213-224.
  • Leary, M., Mazur, M., Mcmillan, M., Chirent, T., Sun, Y. Y., Qian, M., Easton, M. Brandt, M. 2016. “Selective laser melting (SLM) of AlSi12Mg lattice structures”, Materials and Design, 98: 344–357.
  • Dallago, M., Raghavendra, S., Luchin, V., Zappini, G., Pasini, D., Benedetti, M. 2019. “Geometric assessment of lattice materials built via Selective Laser Melting”, Materials Today: Proceedings 7: 353-361.
  • Van Grunsven, W., Hernandez-Nava, E., Reilly, G., Goodall, R. 2014. “Fabrication and mechanical characterisation of titanium lattices with graded porosity”, Metals 4 (3): 401-409.
  • Hernández-Nava, E., Smith, C. J., Derguti, F., Tammas-Williams, S., Leonard, F., Withers, P. J., Todd, I., Goodall, R. 2015. “The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing”, Acta Materialia, 85: 387-395.
  • Hernández-Nava, E., Smith, C. J., Derguti, F., Tammas-Williams, S., Leonard, F., Withers, P. J., Todd, I., Goodall, R. 2016. “The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting”, Acta Materialia, 108: 279–292.
  • Bagheri, Z. S., Melancon, D., Liu, L., Johnston, R. B., Pasini, D. 2017. “Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting”, Journal of Mechanical Behavior of Biomedical Materials, 70: 17–27.
  • Pattanayak, D. K., Fukuda, A., Matsushita, T., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura, T., Kokubo, T. 2011. “Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments”, Acta Biomaterialia, 7 (3): 1398-1406.
  • Lozanovski, B., Leary, M., Tran, P., Shidid, D., Qian, M., Choong, P., Brandt, M. 2019. “Computational modelling of strut defects in SLM manufactured lattice structures”, Materials and Design, 171: 107671.
  • Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R., McKown, S. T. 2013. “Drop weight impact behavior of sandwich panels with metallic micro lattice cores”, International Journal of Impact Engineering, 60: 120-132.
  • Mahmoud, D., Elbestawi, M. 2017. “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review”, Journal of Manufacturing and Materials Processing, 1 (2): 13.
  • Dong, G., Tang, Y., Zhao, Y. F. 2017. “A survey of modeling of lattice structures fabricated by additive manufacturing”, Journal of Mechanical Design, 139(10): 100906.
  • Nazir, A., Abate, K. M., Kumar, A., Jeng, J-Y. 2019. “A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures”, The International Journal of Advanced Manufacturing Technology, 104 (9-12): 3489-3510.