Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için Deney Cihazı Tasarımı ve Üretimi

Dizaltı amputasyon cerrahisi geçirmiş bireyler günlük yaşamlarını sürdürmek için çoğunlukla protez ile rehabilite edilir. Kas-iskelet sisteminden gelen yükler amputasyon güdüğündeki yumuşak dokular aracılığıyla protez soketine aktarılır. Hem yumuşak dokularda oluşan yüksek basınç noktalarının belirlenmesi hem de yumuşak doku-protez mekanik etkileşimini modellemek için sonlu eleman andırımları kullanılmış ancak istenen hassasiyette sonuç elde edilememiştir. Sonlu eleman andırımlarmdaki en büyük eksikliğin yumuşak doku mekanik özelliklerindeki bilinmeyenler olduğu kana: yaygındır. Yumuşak doku mekanik özellikleri ile ilgilenen az sayıdaki araştırma merkezi kendi çalışmaları için yumuşak doku deney sistemleri geliştirmiştir. Bu çalışmada, Gülhane Askeri Tıp Akademisi ile ortak yürütülen bir çalışma kapsamında tasarlanan ve üretilen yumuşak doku deney sistemi sunulmuştur. Deney sistemi yumuşak dokuyu yükleyecek bir adım motoru ve yumuşak doku tepki kuvvetini ölçecek bir yükölçerden oluşan taşınabilir deney birimi, deney birimine kumanda eden ve bilgisayarla iletişimini sağlayan bir denetim kutusu ve tüm sistemi denetleyen ve toplanan verileri saklayan bir taşınabilir bilgisayardan oluşmaktadır. Hastaların yumuşak dokuları üzerinde devirli yükleme, gevşeme ve sünme deneyleri yapılabilmektedir. 

___

  • 1. Sanders, J. E. and Daly, C. H., Measurement of stresses in three orthogonal directions at the residual limb-prosthetic socket interface, IEEE Trans. Rehab. Eng., 1 (1993), 79-85.
  • 2. Sanders, J. E., Lam, D. Dralle, A. J. ve Okumura, R., Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation, J. Rehabil. Res. Dev., (1997) 19-43.
  • 3. Sanders, J. E., Bell, D. M., Okumura, R. M. ve Dralle, A. J., Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: Measurements from 13 transducer sites, IEEE Trans. Rehab. Eng., 6 (1998), 21-31.
  • 4. Zhang, M., Turner-Smith, A. R, Tanner, A. ve Roberts, V. C., Clinical investigation of pressure and shear stress on the trans-tibial stump with a prosthesis", Med. Eng. Phys. 20 (1998), 188-198.
  • 5. Sanders, J. E. ve Daly, C. H., Interface pressures and shear stresses; sagittal plan angular alignment effects in three trans-tibial amputee case studies", Prosthet. Orthotics Int 23 (1999), 21-29.
  • 6. Seguchi, Y., Tanaka, M., Akazawa, Y., Nakagawa, A., ve Kitayama, I., Finite element analysis and load identification of above-knee prosthesis socket, Proc. 4th Ind ANSYS Conf. Pt 2, 12.31-12.44, 1989.
  • 7. Brennan, J. M., ve Childress, D. S., Finite element and experimental investigation of above-knee amputee limb/prosthesis systems: A comparative study, Proc. Bioeng. Conf. (ASME-BED), 20 (1991), 547-550.
  • 8. Mak, A. F. T., Yu, Y. M., Hong, M. L., ve Chan, C., Finite element models for analyses of stresses within above-knee stumps, Proc. 7th World Cong. ISPO, 147-148, 1992.
  • 9. Zhang, M., ve Mak, A. F. T., Finite element analysis of the bad transfer between an above-knee residual limb and its prosthetic socket - roles of interface friction and distal-end boundary conditions, IEEE Trans. Rehab. Eng., 4 (1996), 337-346.
  • 10. Douglas, T. S., Solomonidis, S. E., Lee, V. S. P., ve Spence, W. D., Automatic boundary extraction from magnetic resonance images of the residual limb of a trans-femoral amputee, Proc. 19th Ann. Conf. Eng. Med. Biot, 2, 577-579, 1997.
  • 11. Tanaka, M., Akazawa, Y., Nakagawa, A. ve Kitayama, I., Identification of pressure distribution at the socket interface of an above-knee prosthesis, Adv. Eng. Software, 28 (1997), 379-384.
  • 12. Zhang, M., Mak, A. F. T. ve Mak, J., Air cushion action at the distal end of above-knee stump with a prosthetic socket Proc. 20t1a Ann. Conf. Eng. Med. Biol., 5, 2754-2756. 1998.
  • 13. Torres-Moreno, R., Biomechanical analysis of the interaction between the above-knee residual limb an prosthetic socket, Doktora Tezi, Univ. Strathclyde, Glasgow, Ingiltere, 1991.
  • 14. Silver-Thorn, M. B., Steege, J. W., ve Childress, D. S. A review of prosthetic interface stress investigations, J. Rehabil. Res. Dev., 33 (1996), 253-266.
  • 15. Zachariah, S. G. ve Sanders, J. E., Interface mechanics in Iower-limb external prosthetics: A review of fınite element methods, IEEE Trans. Rehab. Eng., 4 (1996), 288-302.
  • 16. Zhang, M., Mak, A. K T. ve Roberts, V. C., Finite element modelling of a residual lower-limb in a prosthetic socket: A survey of development in the first decade, Med. Eng. Phy., 20 (1998), 360-373.
  • 17. Steege, J. W., Schnur, D. S. ve Childress, D. S., study, Proc. Bioeng. Conf. (ASME-BED), 20 (1991), 547-550. by finite element analysis, Proc. Bioeng. Conf. (ASME-BED), 4, 39-43, 1987.
  • 18. Steege, J. W., Schnur, D. S., Van Vorhis L. R. ve Rovick, J. S., Finite element analysis as a method of pressure estimation at the below-knee socket interface, Proc. 10th Mm. RESNA Conf., 814-816, 1987.
  • 19. Steege, J. W. ve Childress, D. S. Finite element estimation of pressure at the below-knee socket interface, Report ISPO Workshop on CAD/CAM in Prosthetics and Orthotics, 71-82, 1988.
  • 20. Zhang, M., Lord, M., Turner-Smith A. R. ve Roberts, V. C., Development of a non-linear finite element modeling of the below-knee prosthetic socket interface, Med. Eng. Phys., 17 (1995), 559- 566.
  • 21. Comrnean, P. K., Smith, K. E., Vannier, M. W., Szabo, B. A. ve Actis, R. L., Finite element modeling and experimental verifıcation of lower extremity shape change under load, J. Biomech., 30 (1997), 531-536.
  • 22. Houston, V. L., Luo, G., Masan, C. P., Beattie, A. C., LaBlanc, K. P. ve Garbarini, M., Tissue biomechanical studies for prosthetic socket design, Proc. Bioeng. Conf (ASME-BED), 35, 245-246, 1997.
  • 23. Fisher, C., Simpson, G. ve Reynolds, D., Development of a finite element model of a trans¬tibial socket liner — an initial study, Biomed. Sci. Instrunı., 35 (1990), 39-44.
  • 24. Zachariah S. G. ve Sanders, J. E., Pre-stresses due to trans-tibial socket donning: A nonlinear finite element analysis with contact, Proc I st Joint BMES & EMBS Conf, 1, p. 648, 1999.
  • 25. Vannah, W. M. ve Childress, D. S., Indentor tesis and finite element modeling of bulk muscular tissue in vivo, J. Rehabit Res. Dev., 33 (1996), 239-252. 26. Silver-Thorn, M. B., In vivo indentation of lower extremity soft tissues, IEEE Trans. Rehab. Eng., 7 (1999), 268-277.
  • 27. Zheng, Y. P. ve Mak, A. F. T., Development of an ultrasound indentation system for biomechanical properties assessment of soft tissue in vivo, Proc. 17th Ann. Conf. Eng. Med. Biot, 1599-1600, 1995.
  • 28.Tönük, E. Diz Altı Ampute Kalıntı Bacaklarında Yumuşak Doku Mekanik Malzeme özelliklerinin Deneysel Olarak Belirlenmesine Yönelik Çalışmalar, Mühendis ve Makina 43 (2002), 511, 43-49.
  • 29. Graf, B. K., Vanderby, R., Ulm, M. J., Rogalski, R. P. ve Thielke, R. J., Effect of preconditioning on the viscoelastic response of primate patellar tendon, Arthroscopy, 10 (1994), 90-96.
  • 30.Thornton, G. M., Oliynyk, A., Frank, C. B. ve Shrive, N. G., Ligament creep cannot be predicted from stress relaxation at low stress: A biomechanical study of the rabbit medial collateral ligament, JBJS, 15 (1997), 652-656.
  • 31.Lakes, R. S. ve Vanderby, R., Interrelation of creep and relaxation: A modeling approach for ligaments, J. Biomech. Eng., 121 (1999), 612-615.
  • 32. Provenzo, P., Lakes, R., Keenan, T. ve Vanderby, R., Nonlinear Ligament Viscoelasticity, Annals of Biomed. Eng., 29 (2001), 908-914.