AA2024 Alüminyum Alaşımı için Şekillendirilebilme Sınır Diyagramlarını Etkileyen Parametrelerin İncelenmesi

Sac metal şekillendirme; uzay, havacılık ve otomotiv gibi birçok önemli sanayide kullanılan en önemli teknolojilerden birisidir. Müşteri talepleri, kalite, güvenlik ve pazar rekabeti gibi birçok konuda gereksinimlerin karşılanabilmesi amacıyla; sac metal şekillendirme operasyonları işlem öncesinde iyi bir şekilde analiz edilmelidir. Bu çalışmada, maliyet ve kalite gibi unsurları da değerlendirerek sac metal operasyonlarının geliştirilmesi için, (SEA) Sonlu Elemanlar Analizi ile mekanik malzeme karakterizasyonunu kombinasyonu kullanılmıştır. Mekanik malzeme karakterizasyonu konusunda, tek yönlü çekme ve hidrolik şişirme testleri yapılmıştır. Deformasyon ölçümleri için, GOM-Aramis optik sistemi kullanılmıştır. Çalışmalar esnasında AA2024 alaşımı seçilmiştir. Şekillendirmeyi etkileyen parametreler olarak, malzeme ilk kalınlığı, yağlayıcılar ve gerinim oranı (zımba hızı) üzerinde çalışılmıştır. SE analizi; deneysel ortamın simule edilmesi ve farklı yağlama koşullarında etki edecek olan sürtünme katsayısının elde edilmesi için kullanılmıştır. Deneysel ve sayısal simülasyon sonuçlarında iyi bir bağıntı olduğu gözlemlenmiştir.

___

  • 1. S.P. Keeler: SAE Paper No. 650535, 1965 S.P. Keeler: SAE Paper No. 650535, 1965
  • 2. G.M. Goodwin: SAE Paper No. 680093, 1968
  • 3. T. Pepelnjak , K. Kuzman, Numerical Determination of the Forming Limit Diagrams, Journal of Achievements in Materials and Manufacturing Engineering, 20(2007), 375-378.
  • 4. Iordache M., Axinte C., Theoretical And Experimental Studies Regarding the Semi Spherical Punch Process of Steel Sheets A5 Stas 10318-80, Fascicle of Management and Technological Engineering, Volume VII (XVII), 2008.
  • 5. Campos H. B., Butuc M. C., Gracio J. J., Rocha J. E., Duarte J. M. F.,Theoretical and Experimental Determination of the Forming Limit Diagram for the AISI304 Stainless Steel, Journal of Materials Processing Technology, 179(2006), 56-60.
  • 6. Hiwatashi S., Bael A. V., Houtte P. V., Teodosiu C., Prediction of Forming Limit Strains Under Strain-Path Changes: Application of an Anisotropic Model Based on Texture and Dislocation Structure, International Journal of Plasticity 14(1998), 647-669.
  • 7. Cao J., Yao H., Karafillis A., Boyce M. C., Prediction of Localized Thinning in Sheet Metal Using a General Anisotropic Yield Criterion, International Journal of Plasticity, 16(2009), 1105-1129.
  • 8. Yao H., Cao J., Prediction of Forming Limit Curves Using an Anisotropic Yield Function with Prestrain Induced Back Stress, International Journal of Plasticity, 18(2002), 1013-1038.
  • 9. Chien W. Y., Pan J., Tang S. C., a Combined Necking and Shear Localization Analysis for Aluminum Sheets Under Biaxial Stretching Conditions, International Journal of Plasticity, 20(2004), 1953-1981.
  • 10. Son H. S., Kim Y. S., Prediction of Forming Limits for Anisotropic Sheets Containing Prolate Ellipsoidal Voids, International Journal of Mechanical Sciences, 45(2003), 1625-1643.
  • 11. Avilla A. F., Vieira E. L. S., Proposing a Better Forming Limit Diagram Prediction: A Comparative Study, Journal of Materials Processing Technology, 141(2003), 101-108.
  • 12. Butuc M. C., Gracio J. J., Rocha A. Barata da, A Theoretical Study on Forming Limit Diagrams Prediction, Journal of Materials Processing Technology, 142(2003), 714-724.
  • 13. Holger A., Numerical Analysis of Diffuse and Localized Necking in Orthotropic Sheet Metals, International Journal of Plasticity, 23(2007), 798-840.
  • 14. Hsu Q. —C., Comparison of Different Analysis Models to Measure Plastic Strains on Sheet Metal Forming Parts by Digital Image Processing, International Journal of Machine Tools & Manufacture, 43(2003), 515-521.
  • 15. Konstantin G., 4th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS 2007.
  • 16. Geiger M., Merklein M., Determination of Forming Limit Diagrams-A New Analysis Method for Characterization of Materials' Formability, Institute for Mechanical Engineering University of Erlangen-Nuremberg.
  • 17. ASTM International Standards, Standards for Tensile Testing, ASTM E8-04, 2004.
  • 18. Gologranc F., Evaluation of the Flow Stress Curve with the Continuous Hydraulic Bulge Test (Beitrug zur Ermittlung von Fliesskurven in Kontinuier-Lichen Hydraulischen Tiefungsversuch), Institute for Metal Forming Technology, University of Stuttgart, Germany, 1975.
  • 19. Atkinson M., Accurate Determination of Biaxial Stress-Strain Relationship from Hydraulic Bulge Test of Sheet Metals, International Journal of Material Science, 39(1997), 761-769.
  • 20. [20] Panknin W., The Hydraulic Bulge Test and Determination of the Flow Stress Cıırves (Der hydraulische Tiefungsversuch und die Ermittlung von Fliesskurven), Institute for Metal Forming Technology, University of Stuttgart, Germany, 1959.