Mineral gelişimi ve biyokimya hakkinda kisa not

Do¤al inorganik maddeler (mineraller ve kayaçlar) yer kürenin sınırlarını aşmaktadır. Bu nedenle, konusu yer küreyi araştırmak olan jeoloji disiplini, do¤al inorganik dünyanın sadece küçük bir bölümünü temsil edebilmektedir. Evrenin oluşumu ile ilgili belirli sorular, güneş sistemimizin ve yerkürede yaşamın evrimi ile ilişkilidir. Bu makalede, evrenin oluşumu (günümüzden yaklaşık 15 milyar yıl önceden bu yana) ile ilgili deneysel fizik ve do¤al bilimler alanında yürütülen son tartışmalar, minerallerin oluşumu (günümüzden 4 milyon yıl önce) ve yerküredeki yaşamın biyokimyasal görünümü (günümüzden en çok 3 milyon yıl önce) ile birlikte ele alınmış ve tartışılmıştır. Yer küre oluştu¤unda, günümüzde tanımlayabildi¤imiz 4400den fazla mineral bulunmuyordu. Kozmologlar, ilk elementin ancak büyük patlamadan yaklaşık on milyar yıl sonra ergime işlemleri yoluyla oluştu¤unu düşünmektedirler. Dünyasal ve/veya dünya dışı madde mineralojisi araştırmalarında yer küre üzerindeki mineral oluşumunun jeolojik evriminin araştırılması, astronomi, biyoloji, kimya ve di¤er deneysel do¤al bilimlere göre çok daha ilginç bir araç durumundadır.

A brief note on mineral evolution and biochemistry

The natural inorganic materials (minerals and rocks) exceed the limits of the Earth. Therefore, the geology, which is the study of the Earth, represents only a small part of the natural inorganic world. Certain questions about the genesis of the universe are related to the evolution of our solar system and the evolution of life on our planet. In this paper, recent contributions from experimental physical natural-sciences to the formation of the universe (about 15 billion BP) coupled with the occurrence of minerals (4 million years BP) and the biochemical appearance of life (not more than 3 million years) on the Earth are discussed. When Earth was formed, none of the more than 4,400 minerals we know today were existed. Cosmologists estimate that nearly ten billion years after the Big Bang the first elements produced by the melting process. The geological history of mineral evolution on the Earth is an interesting tool to study terrestrial and/or extraterrestrial mineralogy in regard to astronomy, biology, chemistry and other experimental natural sciences.

___

  • Amigó, J.M., Ochando, L.E. 2001. Geologia i química del cosmos i de la Terra. Publicacions de la Universitat de València, 568 p.
  • Aspaug, E., Jutzi, M., Movshovitz, M. 2011. Chondrula formation during planetesimal accretion. Earth and Planetary Science Letters, 308 (3-4) 369-379.
  • Arrhenius, G.O. 2003. Crystals and Life. Helvetica Chimica Acta, 86, 1569-1586.
  • Banfield, J.F., Welch, S.A., Edwards, K.J. 1998. Micro- bes as geochemical agents. The Geochemical Society News, 96, 11–17.
  • Bekker, A., Holland, H.D., Wang, P.-L., Rumble III, D., Stein, H.J., Hannah, J.L., Coetzee, L.L., Beukes, N.J. 2004. Dating the rise of atmospheric oxygen. Nature, 427 (8), 117-120.
  • Bleeker, W. 2002. Archaean tectonics: A review, with illustrations from the Slave craton. In C.M.R. Fowler, C.J. Ebinger, and C.J. Hawkesworth, Eds., The Early Earth: Physical, Chemical, and Biological Development. Geological Society of London, Special Publication No. 99, 151–181.
  • Bowen, N.L. 1956. The evolution of the igneous rocks. Dover Publications, 332 p.
  • Clayton, D.D., Nittler, L.R. 2004. Astrophysics with pre- solar stardust. Annual Review of Astronomy and Astrophysics, 42, 39-78.
  • Cloud, P.E. 1968. Atmospheric and Hydrospheric Evolution on the Primitive Earth. Science, 160, 729-736.
  • Evans, D.A.D. 2013. Reconstructing pre-Pangean super- continents. Geological Society of America Bulletin, 125(11-12), 1735-1751.
  • Goldblatt, C., Zahnle, K.J., Sleep, N.H., Nisbet, E.G. 2010. The Eons of Chaos and Hades. Solid Earth, 1,1-3. Hamilton, W.B. 1999. Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, 91 (1-2), 143-179.
  • Hartman, W.K., Davis, R.D. 1975. Satellite-Sized Planetesimals and Lunar Origin. Icarus, 24, 504- 515.
  • Hazen, R.M. 2010. Evolution of Minerals. Scientific American, 302, 58-65.
  • Hazen R. M. 2013. Paleomineralogy of the Hadean eon: a preliminary special list. American Journal of Science, 313, 807-843.
  • Hazen R.M., Papineau D., Bleeker W., Downs R.T., Ferry J.M., McCoy T.J., Sverjensky D.A. and Yang, H. 2008. Mineral evolution. American Mineralogist, 93, 1693-1720.
  • Hazen, R.M., Ferry, J.M., 2010. Mineral evolution: Mineralogy in the Fourth Dimension. Elements, 6, 9-12.
  • Holland, H.D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of The Royal Society, B361, 903-915.
  • Kennedy, M.J., Droser, M., Mayer, L.M., Pevear, D., Mrofka, D. 2006. Late Precambrian oxygenation: Inception of the clay mineral factory. Science, 311, 1446-1449,
  • Leake, B.G. 1990. Granite magmas: their sources, initiation and consequences of emplacement. Journal of the Geological Society, 147, 579-589.
  • Lowenstam, H.A. 1981. Minerals formed by organisms. Science, 211, 1126-1131.
  • Mann, A., Weiss, M. 1996. Hominoid Phylogeny and Taxononmy: a consideration of the molecular and Fossil Evidence in a Historical Perspective. Molecular Phylogenetics and Evolution, 5(1), 169- 181.
  • Marschall, H.R., Hawkesworth, C.J., Leat, P.T. 2013. Mesoproterozoic subduction under the eastern edge of the Kalahari-Grunehogne Craton preceding Rodinia assembly: The Ritscherflya detrital zircon, Ahlmann- ryggen (Dronning Maud Land, Antarctica). Precambrian Research, 236, 31-45.
  • Masuda, A., Nakumara N., Tanaka, T. 1973. Fine Structures of normalized rare earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37, 2, 239- 248.
  • Nickel, E.H. 1995. The definition of mineral. Canadian Mineralogist, 33, 689-690.
  • Nickel, E.H., Grice, J.D. 1998. The IMA commission on news minerals and mineral names: Procedures and guidelines on mineral nomenclature. Canadian Mineralogist, 36, 913-926.
  • Orgel, L.O. 1998. The origin of life – a review of facts and speculations. Trends in Biochemical Sciences, 23 (12), 491-495.
  • Parnell, J. 2004. Plate tectonics, surface mineralogy, and early evolution of life. International Journal of Astrobiology, 3, 131-137.
  • Reventós, M.M., Rius, J., Amigó, J.M. 2012. Mineralogy and geology: The role of crystallography since the discovery of X-ray diffraction in 1912. Revista de la Sociedad Geológica de España, 25 (3-4), 133- 143.
  • Richardson, S.M. 1978. Vein formation in the C1 carbonaceous chondrites. Meteoritics, 13, 141- 159. Rogers, J.J.W. 1996. A history of continents in the past three billions years. Journal of Geology, 104(1), 91-107.
  • Schatz, H. 2010. The evolution of elements and isotopes. Elements, 6, 13-17.
  • Stern, R.J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52 (5), 578-591.
  • Stolarski, J., Meiborn, A., Prsenioslo, R., Mazur, M. 2007. A Cretaceous scleractinian coral with calcitic skeleton. Science, 318, 92-94.
  • Wilde, S.A., Valley, J.W., Peck, W.H., Graham C.M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175-178.
  • Wood, J.A. 1967. Chrondrites: Their metallic minerals, thermal histories, and parent planets. Icarus, 6 (1- 3) 1-49.