Comparison of the results of the suppression of surface related multiple reflections by predictive deconvolution in pre- and post-stack in 2D marine seismic reflection data: a case study from the Sea of Marmara

This study aims to suppress the multiple reflections from the multi-channel seismic reflection data, which collected on the profile M97-29 at the Sea of Marmara with the MTA Sismik-1 Vessel in 1997 by the General Directorate of Mineral Research and Exploration (MTA), both at the preand post-stack stages separately, by using predictive deconvolution and to compare both results. The stack section obtained by applying predictive deconvolution to the pre-stack shot gathers, is compared with the stack section obtained by applying predictive deconvolution to the post-stack section, which has no predictive deconvolution application before stack. The multiple reflections are mostly suppressed in both sections, but the amplitudes of the primary reflections are much more noticeable and have much higher amplitudes on the stack section obtained by applying predictive deconvolution to the pre-stack shot gathers. Considering the data used in this study, which obtained from a shallow seabed section of the Sea of Marmara including slopped structures, it has been observed that the result obtained by applying the predictive deconvolution process to the pre-stack shot gathers are more successful than the other.

___

  • Bitencourt, L. S., Castro, H. B. S., Fontes, P. H. L., Silva, M. G., Porsani, M. J. 2017. Singular value decomposition and multichannel predictive deconvolution applied to multiple attenuations of Jequitinhonha basin. 15th International Congress of the Brazilian Geophysical Society and EXPOGEF, 31 July - 03 August 2017, Rio de Janeiro, Brazil, 612-615.
  • Carneiro, R. N. C., Leite, L. W. B., Vieira, W. W. S., Rufino, C. S. 2017. Predictive deconvolution of multiple free surfaces in marine seismic data. 15th International Congress of the Brazilian Geophysical Society and EXPOGEF, 31 July - 03 August 2017, Rio de Janeiro, Brazil, 598-602.
  • Dondurur, D. 2018. Acquisition and Processing of Marine Seismic Data. Elsevier, 606.
  • Düşünür, D. 2004. Orta Marmara Havzası’nın aktif tektonik yapısının deniz jeofiziği akustik yöntemleriyle araştırılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 127 (unpublished).
  • Ergintav, S., Demirbağ, E., Ediger, V., Saatçılar, R., İnan, S., Cankurtaranlar, A., Dikbaş and A., Baş, M. 2011. The structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian Fault. Geophysical Journal International 185(1), 93-105.
  • Gibson, B., Larner, K. 1984. Predictive deconvolution and the zero-phase source. Geophysics 49(4), 379-397.
  • Güney, R., Karslı, H., Dondurur, D. 2013. Ofset bağımlı önkestirim dekonvolüsyonu. Jeofizik 17, 3-12.
  • Güney, R., Karslı, H., Dondurur, D. 2019. Optimum parameter selection in offset-dependent predictive deconvolution: testing on multichannel marine seismic data. Marine Geophysical Research 40, 601-617.
  • İmren, C. 2003. Marmara Denizi faal tektonizmasının sismik yansıma verileri ile incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 203 (unpublished).
  • İmren, C., Le Pichon, X., Rangin, C., Demirbağ, E., Ecevitoğlu, B., Görür, N. 2001. The North Anatolian Fault within the Sea of Marmara: a new interpretation based on multi-channel seismic and multi-beam bathymetry data. Earth and Planetary Science Letters, 186(2), 143-158.
  • Jian, X., Zhu, S. 2015. Predictive deconvolution for attenuation of multiple reflections in the marine seismic data processing. Journal of Coastal Research 73 (sp1), 310-314.
  • Kurt, H., Yücesoy, E. 2009. Submarine structures in the Gulf of İzmit, based on multichannel seismic reflection and multibeam bathymetry. Marine Geophysical Researches 30(2), 73-84.
  • Liu, J., Lu, W. 2008. An improved predictive deconvolution based on the maximization of Non-Gaussianity. Applied Geophysics 5(3), 189-196. Liu, L., Lu, W. 2014. Non-Gaussianity-based time-varying predictive deconvolution for multiple removals. Society Exploration Geophysicist Technical Program Expanded Abstracts, 4162-4166.
  • Margrave, G. F., Lamoureux, M. P. 2010. Nonstationary predictive deconvolution. CREWES Research, Report No: 21, 23.
  • Marino, I. K., Santos, M. A. C., Silva, C. G. 2013. Processing of high-resolution, shallow seismic profiles, Guanabara Bay-Rio de Janeiro State, Brazil. Revista Brasileira de Geofisica 31(4), 579-594.
  • Oğuz, S. 2012. Marmara Denizi orta sırtı ve Kumburgaz baseninde sığ gaz birikimlerinin sismik analizleri. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, 76 (unpublished).
  • Peacock, K. L., Treitel, S. 1969. Predictive deconvolution: theory and practice. Geophysics 34(2), 155-169.
  • Perez, M. A., Henley, D. C. 2000. Multiple attenuations via predictive deconvolution in the radial domain. CREWES Research, Report No: 12, 20.
  • Perinçek, E. 2011. Tekirdağ Havzası yüksek çözünürlüklü sismik yansıma verilerinin işlenmesi ve yorumlanması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 95 (unpublished).
  • Porsani, M. J., Ursin, B. 1998. Mixed-phase deconvolution.Geophysics 63(2), 637-647.
  • Porsani, M. J., Ursin, B. 2007. Direct multichannel predictive deconvolution. Geophysics 72(2), H11-H27.
  • Robinson, E. A. 1957. Predictive decomposition of seismic traces. Geophysics 22(4), 767-778.
  • Robinson, E. A. 1967. Predictive decomposition of time series with application to seismic exploration. Geophysics 32(3), 418-484.
  • Robinson, E. A. 1975. Dynamic predictive deconvolution.Geophysical Prospecting 23(4), 779-797.
  • Schoenberger, M., Houston, L. M. 1998. Stationarity transformation of multiples to ımprove the performance of predictive deconvolution. Geophysics 63(2), 723-737.
  • Shankar, U., Singh, S. S., Sain, K. 2009. Signal enhancement and multiple suppression using radon transform: an application to marine multichannel seismic data. Marine Geophysical Researches 30(2), 85-93.
  • Sheng, C., Zhen, Z., Jun, G. 2014. A marine case analysis of multiple suppression. Beijing 2014 International Geophysical Conference and Exposition, 21 - 24 April 2014, Society of Exploration Geophysicists Global Meeting Abstracts, Beijing, China, 261- 264.
  • Sheriff, R. E., Geldart, L. P. 1995. Exploration Seismology.Cambridge University Press. 592.
  • Sinton, J. B., Ward, R. W., Watkins, J. S. 1978. Suppression of long-delay multiple reflections by predictive deconvolution. Geophysics 43(7), 1352-1367.
  • Şapaş, A. 2010. Investigation of rheological implications of the crustal reflectivity in the Sea of Marmara. PhD Thesis, İstanbul Technical University, Institue of Applied Sciences, 130 (unpublished).
  • Taner, M. T. 1980. Long-period sea-floor multiples and their suppression. Geophysical Prospecting 28(1), 30-48.
  • Taner, M. T., Coburn, K. W. 1981. Surface consistent estimation of source-and-receiver response functions, Geophysics 46(4), 412-413.
  • Ulrych, T. J., Matsuoka, T. 1991. The output of predictive deconvolution. Geophysics 56(3), 371-377.
  • Verschuur, D. J. 2013. Seismic Multiple Removal Techniques: Past, Present, and Future. European Association Geoscientists and Engineers Publications, Houten, Netherlands, 212.
  • Wang, B., Cai, J., Guo, M., Mason, C., Gajawada, S., Epili, D. 2011. Postmigration multiple prediction and removal in the depth domain. Geophysics 76(5), WB217-WB223.
  • Weglein, A. B. 1999. Multiple attenuations: an overview of recent advances and the road ahead. The Leading Edge 18(1), 40-44.
  • Yuza, N. H., Nainggolan, T. B., Manik, H. M. 2019. Multiple attenuation methods in short-offset 2d marine seismic data: a case study in Cendrawasih Bay. Institute of Physics Conference Series: Earth and Environmental Science 429, 012031.
  • Yücesoy, E. E. 2006. İzmit Körfezi Çok Kanallı Sismik Yansıma Verilerinin Değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 72 (unpublished)