OROGENIC GOLD PROSPECTIVITY MAPPING USING GEOSPATIAL DATA INTEGRATION, REGION OF SAQEZ, NW OF IRAN

The aim of this study is to map orogenic gold prospecting areas in the region of Saqez, NW of Iran. In order to achieve this task geological, geochemical and airborne geophysical data are analyzed and integrated using index overlay and fuzzy logic methods. Geological map of Saqez (1:100000 scale) is used to assign lithological weights based on their favo- rability for hosting orogenic Au mineralization. Also a fault density map is produced and assigned based on the structural map which is included in the geological map. For prepa- ring geochemical evidence maps, data from 535 stream sediment samples are examined using Number-Size multifractal method for Au, As, Bi and Hg. The detected thresholds are used to assign the catchment basins of the stream sediment samples. Aeromagnetic data is employed to detect the edges of magnetic anomalies based on an enhanced edge detection method. Extracted lineaments are then converted to a density map and assigned properly. Airborne radiometric data is also used to produce two evidence maps. Potassium count grid independently and K/Th ratio map are employed to distinguish locations with hydrother- mal activity. Finally after integrating evidence maps, new locations with high potentials of Au mineralization are identified considering that the gold indications of the study area (Qolqoleh, Kervian and Ghabaghloujeh) are placed in the first priority of the fuzzy logic prospectivity map.

___

  • Afzal P., Zarifi A. Z., Khankandi S. F., Wetherelt A., Yasrebi A. B. 2012. Separation of uranium anomalies based on geophysical airborne analysis by using Concentration-Area (C-A) Fractal Model, Mahneshan 1:50000 Sheet, NW IRAN. Journal of Mining and Metallurgy 48 A (1), 1-11.
  • Airo M. L. 2001. Aeromagnetic and aeroradiometric response to hydrothermal alteration. Surveys in Geophysics 23, 273-302.
  • Airo M. L. 2007. Application of aerogeophysical data for gold exploration: implications for the central lapland greenstone belt. Geological Survey of Finland, Special Paper 44, 187-208.
  • Aliyari F., Rastad E., Zengqian H. 2007. Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran. Resource Geology 57(3), 269-282.
  • Aliyari F., Rastad E., Arehart G. B. 2009. Geology and geochemistry of D-O-C isotope systematics of the Qolqoleh Gold Deposit, Northwestern Iran; implications for ore genesis. Ore Geology Reviews 36, 306-314.
  • Aliyari F., Rastad E., Mohajjel M. 2012. Gold Deposits in the Sanandaj-Sirjan Zone: Orogenic Gold Deposits or Intrusion-Related Gold systems? Resource Geology 62(3), 296-315.
  • Almasi A., Jafarirad A., Kheyrollahi H., Rahimi M., Afzal P., 2014. Evaluation of structural and geological factors in orogenic gold type mineralisation in the Kervian area, north-west Iran, using airborne geophysical data. Exploration Geophysics, http:// dx.doi.org/10.1071/EG13053.
  • Babakhani A. R., Hariri A., Farjandi F. 2003. Geological map of Saqez (1:100000 scale). Geological Survey of Iran (GSI).
  • Bierlein F. P., Murphy F. C., Weinberg R. F., Lees T. 2006.
  • Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia. Mineralium Deposita 41, 107-
  • -
  • Billa M., Cassard D., Lips A.L.W., Bouchot V., Tourliére B., Stein G., Guillou-Frottier L. 2004. Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews 25(1-2), 39-67.
  • Bonham Carter G. F. 1994. Geographic Information Systems for Geoscientists – Modelling with GIS (Computer Methods in the Geosciences 13). Pergamon Press, New York.
  • Burrough P.A.,McDonnell R.A. 1998. Principles of geographical information systems. New York, Oxford University Press, 333 pp.
  • Carranza E.J.M. 2002. Geologically-constrained mineral potential mapping (examples from the Philippines), Ph.D. Thesis, Delft University of Technology, The Netherlands, ITC (International Institute for Geo-Information Science and Earth Observation) Publication No. 86, Enschede, 480 pp.
  • Carranza E. J. M. 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11. Elsevier, Amsterdam.
  • Carranza E. J. M., Hale M. 2001. Geologically-constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research 10(2), 125-136.
  • Cheng Q. M., Agterberg F. P., Ballantyne S. B. 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51, 109-130.
  • Chica-Olmo M., Abarca F., Rigol J.P. 2002. Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain. International Journal of Remote Sensing 23(22), 4801-4814.
  • De Souza Filho C. R., Nunes A. R., Leite E. P., Monteiro L. V. S., Xavier R. B. 2007. Spatial analysis of airborne geophysical data applied to geological mapping and mineral prospecting in the Serra Leste region, Caraja´s Mineral Province, Brazil. Surveys in Geophysics 28, 377-405.
  • Demicco R., Klir G. (Eds.) 2004. Fuzzy Logic in Geology, Elsevier, Amsterdam.
  • Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H. 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95-105.
  • Ferreira F., de Castro L., Bongiolo A., de Souza J., Romeiro M. 2011. Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II — Application to real data. SEG Technical Program Expanded Abstracts 2011, 887-891.
  • Harris J.R., Wilkinson L., Heather K., Fumerton S., Bernier M.A., Ayer J., Dahn R. 2001. Application of GIS processing techniques for producing mineral prospectivity maps – a case study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research 10(2), 91-124.
  • Hashemi M., Afzal P. 2013. Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran. Journal of Arabian Geosciences 6, 4785-4794.
  • Henson P. A., Blewett R. S., Roy I. G., Miller J. McL., Czarnota K. 2010. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia. Precambrian Research 183, 338-355.
  • Heidari S. M. 2004. Mineralogy, geochemistry and fabrics of gold mineralization in the Kervian ductile shear zone (southwest of Saqez). University of Tarbiat Modares, Tehran, Iran, M.Sc. thesis, 245 pp.
  • Heidari S. M., Rastad E., Mohajjel M., Shamsa M. J. 2006. Gold mineralization in ductile shear zone of Kervian (southwest of Saqez). Geosciences 58, 18-37.
  • Jafarirad A. R. 2009. Modeling of conceptual and Empirical Geospatial Datasets for Mineral Prospecting Mapping. TUC, Germany, PhD dissertation, 190 pp.
  • Jafarirad A. R., Busch W. 2011. Porphyry copper mineral prospectivity mapping using interval valued fuzzy sets topsis method in central Iran. Journal of Geographic Information System 3, 312-317.
  • Li L. 2013. Improved edge detection tools in the interpretation of potential field data. Exploration Geophysics 44, 128-132.
  • Luo X., Dimitrakopoulos R. 2003. Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers and Geosciences 29, 3-13.
  • Magalhães L. A., Souza Filho C. R. 2012. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data. Survey in Geophysics 33, 211-241.
  • Mandelbrot B. B. 1983. The Fractal Geometry of Nature. Freeman, San Francisco.
  • Nykänen V., Groves D. I., Ojala V. J., Eilu P., Gardoll S. J. 2008. Reconnaissance-scale conceptual fuzzy- logic prospectivity modelling for iron oxide copper – gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences 55(1), 25-38.
  • Ranjbar H., Honarmand M. 2004. Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. International Journal of Remote Sensing 25(21), 4729-4741.
  • Rogge D.M., Halden N.M., Beaumont-Smith C. 2006. Application of data integration for shearhosted Au potential modelling: Lynn Lake Greenstone Belt, Northwestern Manitoba, Canada. In: J.R. Harris (Ed.), GIS for the Earth Sciences, Geological Association of Canada Special Publication 44, Geological Association of Canada, St. John’s, pp. 191-210.
  • Silva A. M., Pires A. C. B., Mccafferty A., Moraes R. A. V., Xia H. 2003. Application of airborne geophysical data to mineral exploration in the uneven exposed terrains of the Rio Das Velhas greenstone belt. Revista Brasileira de Geociências 33, 17-28.
  • Silverman B. W. 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York, 177 pp.
  • Tangestani M.H., Moore F. 2003. Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences 50(3), 311-317.
  • Tajeddin H. 2011. Gold ore controlling factors in metamorphic rocks of Saqez-Sardasht, NW of Sananda-Sirjan metamorphic zone. Tarbiat Modarres University, Tehran, Iran, PhD dissertation, 436 pp.
  • Tsoukala L. H., Uhrig R. E. 1997. Fuzzy and Neural Approaches in Engineering. Wiley, New York.
  • Verduzco B., Fairhead J. D., Green C. M., MacKenzie C. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge 23(2), 116-119.
  • Zadeh L.A. 1965. Fuzzy sets. IEEE Information and
  • Control 8(3), 338-353.