Precise monitoring of temporal topographic change detection via unmanned air vehicle

Nowadays, fast developing space-borne and airborne remote sensing technologies became indispensable for land related engineering disciplines such as mapping, geology, environment, mining and forestry. The new technologies, provide more qualified and rapid achievable outcomes, are adopted permanently. The description of the topographic surface became easier by means of very high resolution (VHR), rapid achievable and accurate point clouds acquired by digital photogrammetry and airborne laser scanning (ALS). Optical unmanned air vehicle (UAV), one of the most actual photogrammetric techniques, is much in demand for varied purposes. UAVs provide high resolution data using the advantage of lower flight altitudes. In this study, a construction activity and its environmental influences in Bulent Ecevit University Central Campus were monitored by an optical hand-made UAV. In the application, the temporal change was detected by generating contour-lines, digital terrain models (DTMs) and differential DTMs (DiffDTM) of the topography. By DiffDTMs, temporal changes on the topography were visualized in color height scale where the contour-lines presents the change of morphological structure.

___

  • Ai, M., Hu, Q., Li, J., Wang, M., Yuan, H., Wang, S. 2015. A robust photogrammetric processing method of low-altitude UAV images. Remote Sens 7:2302– 2333. doi: 10.3390/rs70302302
  • Darwin, N., Ahmad, A., Zainon, O. 2014. The potential of unmanned aerial vehicle for large scale mapping of coastal area. IOP Conf Ser Earth Environ Sci 18:. doi: 10.1088/1755-1315/18/1/012031.
  • Deng, Y., Wilson, J.P., Bauer, B.O. 2007. DEM resolution dependencies of terrain attributes across a landscape. Int J Geogr Inf Sci 21:187–213. doi: 10.1080/13658810600894364.
  • Höhle, J. 2017. Generating topographic map data from classification results. Remote Sens 9: doi: 10.3390/rs9030224.
  • Karakış, S. 2012. İnsansız Hava Aracı Yardımıyla Büyük Ölçekli Fotogrametrik Harita Üretim Olanaklarının Araştırılması. Harita Dergisi 147:13–20.
  • Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., De Lima, M.I., De Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., Toth, B. 2018a. Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens 10(4):641. doi: 10.3390/rs10040641.
  • Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Arranz Justel, J.J., Perks, M. 2018b. Accuracy Assessment on Unmanned Aerial System Derived Digital Surface Models, Preprints 2018, doi: 10.20944/preprints201809.0579.v1.
  • Rosnell, T., Honkavaara, E. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12:453–480. doi: 10.3390/ s120100453.
  • Sørensen, L.Y., Jacobsen, L.T., Hansen, J.P. 2017. Low cost and flexible UAV deployment of sensors. Sensors (Switzerland) 17:1–13. doi: 10.3390/s17010154.
  • Swatantran, A., Tang, H., Barrett, T., DeCola, P., & Dubayah, R. 2016. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci Rep 6:1–12. doi: 10.1038/srep28277.
  • Teizer, J., Kim, C., Bosche, F. N., Haas, C. T., Caldas, C. 2005. Real-time 3{D} Modeling for Accelerated and Safer Construction using Emerging Technology. 539–543.
  • Watts, A.C., Ambrosia, V.G., Hinkley, E.A. 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens 4:1671–1692. doi: 10.3390/rs4061671.