Nano–Boyutta Alüminyum Partikülü ile Basic Blue 11’in Sonokatalitik Oksidasyonunun İncelenmesi

Tekstil endüstrisinde yüksek konsantrasyonda organik madde ve boya içerikli renkli atıksu açığa çıkmaktadır. Bu tür atıksuların arıtılabilirliğinde yaygın olarak kimyasal veya ileri oksidasyon prosesleri kullanılmaktadır. Son zamanlarda sıfır yüklü partiküller (Al0, Cu0, Fe0, Mg0, Ni0, Zn0) kullanılarak suda bulunan kirleticilerin giderimi konusunda çalışmalar yer almaktadır. Çalışma kapsamında, kesikli reaktör düzeneğinde ultrases (US–40 kHz) ve nano–boyutta sıfır yüklü alüminyum (nZVAl) partikülünün tekli ve birleşik (US/nZVAl) proses uygulamalarının Basic Blue 11 (BB11) boya gideriminde pH, nZVAl dozu ve reaksiyon süresi parametrelerinin etkisi araştırılmıştır. Elde edilen sonuçlara göre, nZVAl partikülünün adsorpsiyon kapasitesinin pH 10 değerinde daha iyi olduğu tespit edilmiştir. Ultrases prosesinin tek başına etkisi az iken, nZVAl partikülü tek başına kullanıldığında 0.40 g nZVAl dozunda 60 dk’ da elde edilen benzer sonuç, birleşik US/nZVAl prosesi kullanıldığında 0.20 g dozda elde edilmiştir. Ultrases etkisi altında nZVAl partikül çap boyutu küçüldüğünden ve yüzey alanı arttığından daha düşük dozda ve kısa sürede BB11 giderimi elde edilmiştir. nZVAl partikülünün BB11 gideriminde geri kazanımı ve tekrar kullanılabilirliği araştırılmış ve nZVAl tek kullanıldığında 5 kez kullanılırken, birleşik US/nZVAl uygulandığında 8 kez tekrar kullanılabileceği ortaya konmuştur. nZVAl ve ultrases proses ile boya adsorpsiyonun Langmuir izotermine ve ikinci dereceden adsorpsiyon kinetiğine uygun olduğu tespit edilmiştir.

Investigation of the Effect of Nano-Scale Aluminum Particle and Ultrasound Process on Basic Blue 11 Removal

In the textile industry, colored wastewater containing high concentrations of organic matter and dyes is released. Chemical or advanced oxidation processes are commonly used in the treatment of such wastewaters. Recently, there have been studies on the removal of pollutants in water using zero–valent particles (Al0, Cu0, Fe0, Mg0, Ni0, Zn0). Within the scope of the study, the effects of the alone and combined (US/nZVAl) process applications of ultrasound (US–40 kHz) and nano-sized zero-charged aluminum (nZVAl) particles in batch reactor setup on pH, nZVAl dose, and reaction time parameters were investigated in terms of Basic Blue 11 (BB11) dye removal. According to the results obtained, it was determined that the adsorption capacity of the nZVAl particle was better at pH 10. When the effect of the ultrasound process alone was low, a similar result, which was obtained in 60 minutes at a dose of 0.40 g nZVAl when the nZVAl particle was used alone, was obtained at a dose of 0.20 g using the combined US/nZVAl process. Since the nZVAl particle diameter size decreased and the surface area increased under the effect of ultrasound, BB11 removal was obtained at a lower dose and in a short time. The recovery and reusability of the nZVAl particle in BB11 removal was investigated, and it was found out that while nZVAl was used 2 times when used alone, it could be reused 5 times when the combined US/nZVAl process was applied. It was also determined that dye adsorption with nZVAl and the ultrasound process was in accordance with the Langmuir isotherm and second order adsorption kinetics.

___

  • Abd El–Lateef, H.M., Khalaf, M., Saleh, M., 2018. Adsorption and removal of cationic and anionic surfactants using zero–valent iron nanoparticles. J. Mol. Liq. 268: 497–505. 10.1016/j.molliq.2018.07.093
  • Abid, M.F., Zablouk, M.A., Abid–Alameer, A.M., 2012. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. IJEHSE. 9 (1): 1–9. 10.1186/1735-2746-9-17
  • AboliGhasemabadi, M., Mbarek, W.B., Cerrillo–Gil, A., Roca–Bisbe, H., Casabella, O., Blanquez, P., Pineda, E., Escoda, L., Sunol, J.J., 2020. Azo–dye degradation by Mn–Al powders. J. Environ. Manage. 25: 110012. 10.1016/j.jenvman.2019.110012
  • Ayyıldız, Ö., Acar, E., İleri, B., 2016. Sonocatalytic reduction of hexavalent chromium by metallic magnesium particles. Water Air Soil Pollut. 227: 1–9. 10.1007/s11270-016-3065-y
  • Atacag Erkurt, H., 2010. The Handbook of Environmental Chemistry. Biodegradation of Azo Dyes. Springer‐Verlag Berlin Heidelberg, 9. 222 s.
  • Beckett, M.A., Hua, I., 2001. Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J. Phys. Chem. 105 (15): 3796–3802. 10.1021/jp003226x
  • Bisschops, I., Spanjers, H., 2003. Literature review on textile wastewater characterization. Environ. Technol. 24 (11): 1399–1411. 10.1080/09593330309385684
  • Bokare, A.D., Choi, W., 2009. Zero–valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 43 (18): 7130–7135. 10.1021/es9013823
  • Breitbach, M., Bathen, D., Schmidt–Traub, H., 2003. Effect of ultrasound on adsorption and desorption processes. Ind. Eng. Chem. Res. 42 (22): 5635–5646. 10.1021/ie030333f
  • Brotchie, A., Borisova, D., Belova, V., Möhwald, H., Shchukin, D., 2012. Ultrasonic modification of aluminum surfaces: comparison between thermal and ultrasonics effects. J. Phys. Chem. 116 (14): 7952–7956. 10.1021/jp3016408
  • Cai, M.Q., Wei, X.Q., Song, Z.J., Jin, M.C., 2015. Decolorization of azo dye Orange G by aluminum powder enhanced by ultrasonic irradiation. Ultrason. Sonochem. 22: 167–173. 10.1016/j.ultsonch.2014.06.023
  • Cai, M., Su, J., Lian, G., Wei, X., Dong, C., Zhang, H., Jin, M., Wei, Z., 2016. Sono–advanced fenton decolorization of azo dye Orange G: analysis of synergistic effect and mechanisms. Ultrason. Sonochem. 31: 193–200. 10.1016/j.ultsonch.2015.12.017
  • Chen B., Wang, X., Wang, C., Jiang, W., Li, S., 2011. Degradation of azo dye direct sky blue 5B by sonication combined zero–valent iron. Ultrason. Sonochem. 18 (5): 1091–1096. 10.1016/j.ultsonch.2011.03.026
  • Cheng, Z., Fu, F., Pang, Y., Tang, B., Lu, J., 2015. Removal of phenol by acid–washed zero–valent aluminum in the presence of H2O2. Chem. Eng. Sci. 260: 284–290. 10.1080/19443994.2015.1006259
  • Chien, S.H., Clayton, W.R., 1980. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 44: 265–268. 10.2136/sssaj1980.03615995004400020013x
  • Deng, D., Lamssali, M., Aryal, N., Ofori–Boadu, A., Jha, M. K., Samuel, R.E., 2020. Textiles wastewater treatment technology: a review. Water Environ. Res. 92 (10): 1805–1810. 10.1002/wer.1437
  • Du, J., Che, D., Li, X., Guo, W., Ren, N., 2017. Factors affecting p–nitrophenol removal by microscale zero–valent iron coupling with weak magnetic field. RSC Adv. 7: 18231–18237. 10.1039/C7RA02002C
  • Dutta, S., Sahaa, R., Kalita, H., Bezbaruah, A.N., 2016. Rapid reductive degradation of azo andanthraquinone dyes by nanoscale zero–valent iron. Environ. Technol. Innov. 5: 176–187. 10.1016/j.eti.2016.03.001
  • Eren, Z., 2012a. Ultrasound as a basic and auxiliary process for dye remediation: a review. J. Environ. Manage. 104: 127–141. 10.1016/j.jenvman.2012.03.028
  • Eren, Z., 2012b. Degradation of an azo dye with homogeneous and heterogeneous catalysts by sonophotolysis. Clean – Soil, Air, Water. 40 (11): 1284–1289. 10.1002/clen.201100384
  • Eren, Z., O’Shea, K., 2020. Definition of the optimum conditions of dual frequency (20 kHz+640 kHz) ultrasonic system by decolorization of Crystal Violet dye. J. Fac. Eng. Archit. Gaz. 35 (3): 1257–1268.
  • Esfahani, A.R., Datta, T., 2018. Nitrate removal from water using zero–valent aluminium. J. Water Environ. Technol. 34 (2020): 25–36. 10.1111/wej.12438
  • Fan, J., Guo, Y., Wang, J., Fan, M., 2009. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 166 (2–3): 904–910. 10.1016/j.jhazmat.2008.11.091
  • Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30 (7): 953–971. 10.1016/j.envint.2004.02.001
  • Freundlich, H., 1906. Adsorption in solution. Phys. Chem. Soc. 40: 1361–1368.
  • Fu, F., Dionysiou, D.D., Liu, H., 2014. The use of zero–valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267: 194–205. 10.1016/j.jhazmat.2013.12.062
  • Fu, F., Han, W., Cheng, Z., Tang, B., 2015a. Removal of hexavalent chromium from wastewater by acid–washed zero–valent aluminum. Desalin. Water Treat. 57, 5592–5600. 10.1080/19443994.2015.1006259
  • Fu, F., Cheng, Z., Dionysiou, D.D., Tang, B., 2015b. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: performance and mechanism. J. Hazard. Mater. 298: 261–269. 10.1016/j.jhazmat.2015.05.047
  • Hamdy, A., Mostafa, K., Nasr, N., 2018. Zero–valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Sci. Technol. 78 (2): 367–378. 10.2166/wst.2018.306
  • Hassaan, M.A., El Nemr, A., 2017. Advanced oxidation processes for textile wastewater treatment. J. Photochem. Photobiol. C. 2 (3): 85–93. 10.11648/j.ijpp.20170203.13
  • Ho, Y, McKay, G., 1998. Pseudo–second order model for sorption processes. Process Biochem. 34: 451–465. 10.1016/S0032-9592(98)00112-5
  • Hsu, L.C., Chen, K.Y., Chan, Y.T., Deng, Y., Hwang, C.E., Liu, Y.T., Wang, S.L., Kuan, W.H., Tzou, Y.M., 2016. MS title: catalytic oxidation and removal of arsenite in the presence of Fe ions and zero–valent Al metals. J. Hazard. Mater. 317: 237–245. 10.1016/j.jhazmat.2016.05.071
  • Hwang, Y.H., Kim, D.G., Shin, H.S., 2011. Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater. 185: 1513–1521. 10.1016/j.jhazmat.2010.10.078
  • İleri, B., Ayyıldız, O., Apaydın, O., 2015. Ultrasound–assisted activation of zero–valent magnesium for nitrate denitrification: identification of reaction by–products and pathways. J. Hazard. Mater. 292: 1–8. 10.1016/j.jhazmat.2015.03.004
  • İleri, B., 2016. Ultrases ve sıfır yüklü metal parti̇külleri̇ (Al0 ve Mg0) i̇le ni̇tratin deni̇tri̇fi̇kasyonu. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Doktora Tezi. 118 s.
  • İleri, B., 2019. Removal of methyl red dye by adsorption process using modified fly ash with ultrasound process. Dokuz Eylul Univ. Fac. Engin. J. Sci. Eng. 21 (61): 25–40. 10.21205/deufmd.2019216103
  • İleri, B., Terzioğlu, O, Çiçi, Y., 2019. Nitrate chemical denitrification with zero–valent manganese and ultrasound. 5 (1): 32–48. 10.28979/comufbed.529912
  • İleri, B., Şanlıyüksel Yücel, D., 2020. Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies. Environ. Monit. Assess. 192: 1–18. 10.1007/s10661-020-8150-4
  • İleri, B., 2022. Sono–assisted adsorption of acid violet 7 and basic violet 10 dyes from aqueous solutions: evaluation of isotherm and kinetic parameters. Environ. Eng. Res. 27 (1): 200287. 10.4491/eer.2020.287
  • Jiang, B., Xin, S., Gao, L., Luo, S., Xue, J., Wu, M., 2017. Dramatically enhanced aerobic Cr(VI) reduction with scrap zero–valent aluminum induced by oxalate. Chem. Eng. J. 308: 588–596. 10.1016/j.cej.2016.09.098
  • Khatri, J., Nidheesh, P.V., Singh, T.S.A., Suresh Kumar, M., 2018. Advanced oxidation processes based on zero–valent aluminium for treating textile wastewater. Chem. Eng. 348: 67–73. 10.1016/j.cej.2018.04.074
  • Lagergren, S. 1898. About the theory of so–called adsorption of soluble substances. Kung Sven Vetens Hand Band. 24: 1–39.
  • Langmuir, I., 1917. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40: 1361–1403. 10.1021/ja02242a004
  • Li, L., Hu, J., Shi, X., Fan, M., Luo, J., Wei, X., 2016. Nanoscale zero–valent metals: a review of synthesis, characterization, and applications to environmental remediation. Environ. Sci. Pollut. Res. 23: 17880–17900. 10.1007/s11356-016-6626-0
  • Li, S., Wang, W., Liang, F., Wei–Xian, Z., 2016. Heavy metal removal using nanoscale zero–valent iron (nZVI): theory and application. J. Hazard. Mater. 322 (Part A): 163–171. 10.1016/j.jhazmat.2016.01.032
  • Lien, H.L., Zhang, W., 2002. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere. 49: 371–378. 10.1016/S0045-6535(02)00248-5
  • Lien, H.L., Yu, C.C., Lee, Y.C., 2010. Perchlorate removal by acidified zero–valent aluminum and aluminum hydroxide. Chemosphere. 80 (8): 888–893. 10.1016/j.chemosphere.2010.05.013
  • Lin, C.J., Wang, S.L., Huang, P.M., Tzou, Y.M., Liu, J.C., Chen, C.C., Chen, J.H., Lin, C., 2009. Chromate reduction by zero–valent Al metal as catalyzed by polyoxometalate. Water Res. 43: 5015–5022. 10.1016/j.watres.2009.08.015
  • Liu, W., Zhang, H., Cao, B., Lin, K., Gan, J., 2011. Oxidative removal of bisphenol A using zero valent aluminum–acid system. Water Res. 45 (4): 1872–1878. 10.1016/j.watres.2010.12.004
  • Mahmoud, A.S., Farag, R.S., Elshfai, M.M., Mohamed, L.A., Ragheb, S.M., 2020. Nano zero–valent aluminum (nZVAl) preparation, characterization, and application for the removal of soluble organic matter with artificial intelligence, isotherm study, and kinetic analysis. Water Air Soil Pollut. 12: 1–13. 10.1177/1178622119878707
  • Marcelo, C.R., Puiatti, G.A., Nascimento, M.A., Oliveira, A.F., Lopes, R.P., 2018. Degradation of the reactive blue 4 dye in aqueous solution using zero–valent copper nanoparticles. J. Nanomater. 2018: 1–10. 10.1155/2018/4642038
  • Mason, T.J., Peters, D., 2001. Advances in sonochemistry, ultrasound in environmental protection. 6, JAI an Imprint of Elsevier Science, England.
  • McCafferty, E., 2003. Sequence of steps in the pitting of aluminum by chloride ions. Corros. Sci. 45 (7): 1421–1438. 10.1016/S0010-938X (02)00231-7
  • Mdlovu, N.V., Lin, K.S., Chen, C.Y., Mavuso, F.A., Kunene, S.C., Carrera Espinoza, M.J., 2019. In–situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine–modified zero–valent iron nanoparticles. Chemosphere. 224: 816–826. 10.1016/j.chemosphere.2019.02.160
  • Nidheesh, P.V., Khatri, J., Singh, T.S.A., Gandhimathi, R., Ramesh, S.T., 2018. Review of zero–valent aluminium–based water and wastewater treatment methods. Chemosphere. 200: 621–631. 10.1016/j.chemosphere.2018.02.155
  • Pokhrel, N., Vabbina, P.K., Pala, N., 2016. Sonochemistry: science and engineering. Ultrason. Sonochem. 29: 104–128. 10.1016/j.ultsonch.2015.07.023
  • Qui, G., Wu, Y., Qi, L., Chen, C., Bao, L., Qui, M., 2018. Study on the degradation of azo dye wastewater by zero–valent iron. Nat. Environ. Pollut. Technol. 17 (2): 479–483.
  • Radha, K.V., Sridevi, V., Kalaivani, K., 2009. Electrochemical oxidation for the treatment of textile industry wastewater. Biores. Technol. 100: 987–990. 10.1016/j.biortech.2008.06.048
  • Raman, C.D., Kanmani, S., 2016. Textile dye degradation using nano zero valent iron: a review. J. Environ. Manage. 177 (15): 341–355. 10.1016/j.jenvman.2016.04.034
  • Rezaee, A., Ghaneian, M. T., Hashemian, S.J., Moussavi, G., Khavanin, A., Ghanizadeh, G., 2008a. Decolorization of reactive blue 19 dye from textile wastewater by the UV/H2O2 Process. Res. J. Appl. Sci. 8, 1108–1112. 10.3923/jas.2008.1108.1112
  • Sharma, S. Kaur, A., 2018. Various methods for removal of dyes from industrial effluents–a review. Indian J. Sci. Technol. 11 (12): 1–21. 10.17485/ijst/2018/v11i12/120847
  • Singh, K., Arora, S., 2011. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41: 807–878. 10.1080/10643380903218376
  • Taherkhani, S., Khani, A., 2019. Preparation of nanosized zero–valent zinc (Zn0) immobilized on ZnO as redox nanocomposite for degradation of methyl orange from aqueous solution. J Environ. Health Sustain. Dev. 4 (1): 557–66. 10.18502/jehsd.v4i1.486
  • Treviño, P., Ibanez, J.G., Vasquez–Medrano, R., 2014. Chromium (VI) reduction kinetics by zero–valent aluminum. Int. J. Electrochem. Sci. 9: 2556–2564.
  • Wang, A., Guo, W., Hao, F., Yue, X., Leng, Y., 2014. Degradation of acid orange 7 in aqueous solution by zero–valent aluminum under ultrasonic irradiation. Ultrason. Sonochem. 21 (2): 572–575. 10.1016/j.ultsonch.2013.10.015
  • Wang, W., Zhao, P., Hu, Y., Zan, R., 2020. Application of weak magnetic field coupling with zero–valent iron for remediation of groundwater and wastewater: a review. J. Clean. Prod. 262: 121341. 10.1016/j.jclepro.2020.121341
  • Weber, W.J., Morris, J.K., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89: 31–60. 10.1061/JSEDAI.0000467
  • Wu, S., Yang, S., Li, Q., Wang, M., Xue, Y., 2021. Iron(II) sulfate crystals assisted mechanochemical modification of microscale zero–valent aluminum (mZVAl) for oxidative degradation of phenol in water. Chemosphere. 274: 129767. 10.1016/j.chemosphere.2021.129767
  • Xei, S., Yang, Y., Gai, W.Z., Deng, Z.Y., 2021. Oxide modified aluminum for removal of methyl orange and methyl blue in aqueous solution. RSC Adv. 11: 867. 10.1039/D0RA09048D
  • Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M., 2014. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209: 172–184. 10.1016/j.cis.2014.04.002
  • Yang, B., Deng, S., Yu, G., Lu, Y., Zhang, H., Xiao, J., Chen, G., Cheng, X., Shi, L., 2013. Pd/Al bimetallic nanoparticles for complete hydrochlorination of 3–chlorophenol in aqueous solution. Chem. Eng. J. 219: 492–498. 10.1016/j.cej.2012.11.108
  • Yang, S., Zheng, D., Chang, S., Shi, C., 2016. Zero valent aluminum based oxidation/reduction technology applied in water treatment. Prog. Chem. 28 (5): 754–762. 10.7536/PC151047
  • Yang, S., Zheng, D., Ren, T., Zhang, Y., Xin, J., 2017. Zero–valent aluminum for reductive removal of aqueous pollutants over a wide pH range: performance and mechanism especially at near–neutral pH. Water Res. 123: 704–714. 10.1016/j.watres.2017.07.013
  • Yaseen, D.A., Scholz, M., 2018. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16 (4): 1193–1226. 10.1007/s13762-018-2130-z
Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2020
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi